DFS | BFS 合集

hdu 5025 Saving Tang Monk

状态压缩的BFS,一般适用于每种状态能在有限空间内表示的情况
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 101;
int n, m;
bool vis[MAXN][MAXN][10][35];
int snake[10][2], csnk;
char da[MAXN][MAXN];
int Kong[2], Tang[2], dir[4][2] = {0,1, 0,-1, -1,0, 1,0};
struct _node
{
    int x, y, nk, snk, cost;
    _node (){}
    _node (int ix, int iy, int ink, int isnk, int icost)
    {
        x = ix; y = iy; nk = ink; snk = isnk; cost = icost;
    }
};
queue<_node> mmp;
int solve(int x, int y)
{
    char cc;
    int res = 0x3f3f3f3f;
    _node tp(x,y,0,0,0);
    mmp.push(tp);
    while (!mmp.empty())
    {
        tp = mmp.front(); mmp.pop();
        x = tp.x, y = tp.y;
        if (x==Tang[0] && y==Tang[1] && tp.nk==m)
            res = min(res, tp.cost);
        if (vis[x][y][tp.nk][tp.snk]) continue;
        vis[x][y][tp.nk][tp.snk] = 1;
        for (int i = 0; i< 4; ++i)
        {
            int xx = x+dir[i][0], yy = y+dir[i][1];
            if (xx>=0&&xx<n&&yy>=0&&yy<n && da[xx][yy]!='#')
            {
                cc = da[xx][yy];
                _node ad(xx,yy,tp.nk,tp.snk,tp.cost+1);
                if (cc >= '1' && cc <='9')
                {
                    if (ad.nk+1 == cc-'0')
                    {
                        ad.nk += 1;
                    }
                }
                else if (cc>=0 && cc<csnk)
                {
                    if ((tp.snk & (1<<cc))==0)
                    {
                        ad.snk = ad.snk|(1<<cc), ++ad.cost;
                    }
                }
                if (!vis[ad.x][ad.y][ad.nk][ad.snk])
                    mmp.push(ad);
            }
        }
    }
    return res;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    while (scanf("%d%d", &n, &m) != EOF && (n+m))
    {
        csnk = 0;
        memset(vis, 0, sizeof vis);
        for (int i = 0; i< n; ++i) scanf("%s", da[i]);
        for (int i = 0; i< n; ++i)
        {
            for (int j = 0; j< n; ++j)
            {
                switch (da[i][j])
                {
                    case 'K': Kong[0]=i, Kong[1]=j; break;
                    case 'T': Tang[0]=i, Tang[1]=j; break;
                    case 'S': da[i][j]= char(csnk++); break;
                }
            }
        }
        int res = solve(Kong[0], Kong[1]);
        if (res == 0x3f3f3f3f) puts("impossible");
        else printf("%d\n", res);
    }
    return 0;
}


hdu 5031 Lines

根据题意,必然有解。那么枚举每个点和过该点的直线,DFS后更新结果
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
using namespace std;
const int MAXN = 55;
int n, m, da[MAXN][MAXN], res;
set<double> mmp;
void dfs(int cnt, int last)
{
    if (cnt >= res) return;
    if (!last)
    {
        res = min(res, cnt);
        return;
    }
    int flg = 1;
    for (int x = 0; x<= n && flg; ++x)
        for (int y = 0; y<= m && flg; ++y)
        {
            if (da[x][y] == 0) continue;
            flg = 0;
            if (x == 0)
            {
                int k;
                for (k = 0; k<= n; ++k) if (!da[k][y]) break;
                if (k == n+1)
                {
                    for (k = 0; k<= n; ++k) --da[k][y];
                    dfs(cnt+1, last-n-1);
                    for (k = 0; k<= n; ++k) ++da[k][y];
                }
            }
            if (y == 0)
            {
                int k = 0;
                for (; k<= m; ++k) if (!da[x][k]) break;
                if (k == m+1)
                {
                    for (k = 0; k<= m; ++k) --da[x][k];
                    dfs(cnt+1, last-m-1);
                    for (k = 0; k<= m; ++k) ++da[x][k];
                }
            }
            mmp.clear();
            for (int a = x+1; a<= n; ++a)
            {
                for (int b = 0; b <= m; ++b)
                {
                    if (b == y || da[a][b] == 0) continue;
                    int p = a-x, q = b-y;
                    if (mmp.find(double(p)/q) != mmp.end()) continue;
                    mmp.insert(double(p)/q);
                    int o = 1;
                    while (x+p*o>= 0 && x+p*o <=n && y+q*o>=0 && y+q*o <= m && da[x+p*o][y+q*o]) ++o;
                    if (x+p*o>= 0 && x+p*o <=n && y+q*o>=0 && y+q*o <= m) continue;
                    if (x-p>= 0 && x-p <=n && y-q>=0 && y-q <= m) continue;
                    if (o < 3) continue;
                    for (o = 1; x+p*o>= 0 && x+p*o <=n && y+q*o>=0 && y+q*o <= m; ++o)
                        --da[x+p*o][y+q*o];
                    --da[x][y];
                    dfs(cnt+1, last-o);
                    ++da[x][y];
                    for (o = 1; x+p*o>= 0 && x+p*o <=n && y+q*o>=0 && y+q*o <= m; ++o)
                        ++da[x+p*o][y+q*o];
                }
            }
        }
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int t, sm;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d%d", &n, &m);
        sm = 0;
        for (int i = 0; i<= n; ++i)
        {
            for (int j = 0; j<= m; ++j)
            {
                scanf("%d", &da[i][j]);
                sm += da[i][j];
            }
        }
        res = min(14, sm/3);
        dfs(0, sm);
        printf("%d\n", res);
    }
    return 0;
}


你可能感兴趣的:(DFS | BFS 合集)