kdtree的原理就是基于二叉树的形式,将高维空间用超矩形进行划分.其主要用途是用来求解高维空间中最近邻的值.
下面是kdtree.h文件,是kdtree数据结构的头文件
#ifndef _KDTREE_H_ #define _KDTREE_H_ #ifdef __cplusplus extern "C" { #endif struct kdtree; struct kdres; /* create a kd-tree for "k"-dimensional data */ struct kdtree *kd_create(int k); /* free the struct kdtree */ void kd_free(struct kdtree *tree); /* remove all the elements from the tree */ void kd_clear(struct kdtree *tree); /* if called with non-null 2nd argument, the function provided * will be called on data pointers (see kd_insert) when nodes * are to be removed from the tree. */ void kd_data_destructor(struct kdtree *tree, void (*destr)(void*)); /* insert a node, specifying its position, and optional data */ int kd_insert(struct kdtree *tree, const double *pos, void *data); int kd_insertf(struct kdtree *tree, const float *pos, void *data); int kd_insert3(struct kdtree *tree, double x, double y, double z, void *data); int kd_insert3f(struct kdtree *tree, float x, float y, float z, void *data); /* Find the nearest node from a given point. * * This function returns a pointer to a result set with at most one element. */ struct kdres *kd_nearest(struct kdtree *tree, const double *pos); struct kdres *kd_nearestf(struct kdtree *tree, const float *pos); struct kdres *kd_nearest3(struct kdtree *tree, double x, double y, double z); struct kdres *kd_nearest3f(struct kdtree *tree, float x, float y, float z); /* Find the N nearest nodes from a given point. * * This function returns a pointer to a result set, with at most N elements, * which can be manipulated with the kd_res_* functions. * The returned pointer can be null as an indication of an error. Otherwise * a valid result set is always returned which may contain 0 or more elements. * The result set must be deallocated with kd_res_free after use. */ /* struct kdres *kd_nearest_n(struct kdtree *tree, const double *pos, int num); struct kdres *kd_nearest_nf(struct kdtree *tree, const float *pos, int num); struct kdres *kd_nearest_n3(struct kdtree *tree, double x, double y, double z); struct kdres *kd_nearest_n3f(struct kdtree *tree, float x, float y, float z); */ /* Find any nearest nodes from a given point within a range. * * This function returns a pointer to a result set, which can be manipulated * by the kd_res_* functions. * The returned pointer can be null as an indication of an error. Otherwise * a valid result set is always returned which may contain 0 or more elements. * The result set must be deallocated with kd_res_free after use. */ struct kdres *kd_nearest_range(struct kdtree *tree, const double *pos, double range); struct kdres *kd_nearest_rangef(struct kdtree *tree, const float *pos, float range); struct kdres *kd_nearest_range3(struct kdtree *tree, double x, double y, double z, double range); struct kdres *kd_nearest_range3f(struct kdtree *tree, float x, float y, float z, float range); /* frees a result set returned by kd_nearest_range() */ void kd_res_free(struct kdres *set); /* returns the size of the result set (in elements) */ int kd_res_size(struct kdres *set); /* rewinds the result set iterator */ void kd_res_rewind(struct kdres *set); /* returns non-zero if the set iterator reached the end after the last element */ int kd_res_end(struct kdres *set); /* advances the result set iterator, returns non-zero on success, zero if * there are no more elements in the result set. */ int kd_res_next(struct kdres *set); /* returns the data pointer (can be null) of the current result set item * and optionally sets its position to the pointers(s) if not null. */ void *kd_res_item(struct kdres *set, double *pos); void *kd_res_itemf(struct kdres *set, float *pos); void *kd_res_item3(struct kdres *set, double *x, double *y, double *z); void *kd_res_item3f(struct kdres *set, float *x, float *y, float *z); /* equivalent to kd_res_item(set, 0) */ void *kd_res_item_data(struct kdres *set); #ifdef __cplusplus } #endif #endif /* _KDTREE_H_ */
下面是kdtree.c 文件,上面有我自己精心整理的详细的汉语注释,这个版本的kdtree可直接拿来用
//kd_tree.h kd_tree的头文件 #include "stdafx.h" //头文件 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include "kd_tree.h" #if defined(WIN32) || defined(__WIN32__) #include <malloc.h> #endif #ifdef USE_LIST_NODE_ALLOCATOR #ifndef NO_PTHREADS #include <pthread.h> #else #ifndef I_WANT_THREAD_BUGS #error "You are compiling with the fast list node allocator, with pthreads disabled! This WILL break if used from multiple threads." #endif /* I want thread bugs */ #endif /* pthread support */ #endif /* use list node allocator */ //超平面的结构体 //包括一个属性的维数和每维坐标的最大和最小值构成的数组 struct kdhyperrect { int dim; double *min, *max; /* minimum/maximum coords */ }; //节点的结构体,也就是事例的结构体 struct kdnode { double *pos; int dir; void *data; struct kdnode *left, *right; /* negative/positive side */ }; //返回结果节点, 包括树的节点,距离值, 是一个单链表的形式 struct res_node { struct kdnode *item; double dist_sq; struct res_node *next; }; //树有几个属性,一是维数,一是树根节点,一是超平面,一是销毁data的函数 struct kdtree { int dim; struct kdnode *root; struct kdhyperrect *rect; void (*destr)(void*); }; //kdtree的返回结果,包括kdtree,这是一个双链表的形式 struct kdres { struct kdtree *tree; struct res_node *rlist, *riter; //双链表? int size; }; //计算平方的宏定义,相当于函数 #define SQ(x) ((x) * (x)) static void clear_rec(struct kdnode *node, void (*destr)(void*)); static int insert_rec(struct kdnode **node, const double *pos, void *data, int dir, int dim); static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq); static void clear_results(struct kdres *set); static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max); static void hyperrect_free(struct kdhyperrect *rect); static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect); static void hyperrect_extend(struct kdhyperrect *rect, const double *pos); static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos); #ifdef USE_LIST_NODE_ALLOCATOR static struct res_node *alloc_resnode(void); static void free_resnode(struct res_node*); #else #define alloc_resnode() malloc(sizeof(struct res_node)) #define free_resnode(n) free(n) #endif //创建一个kdtree struct kdtree *kd_create(int k) { struct kdtree *tree; if(!(tree = (kdtree*)malloc(sizeof *tree))) { return 0; } tree->dim = k; tree->root = 0; tree->destr = 0; tree->rect = 0; return tree; } //释放掉kdtree void kd_free(struct kdtree *tree) { if(tree) { kd_clear(tree); free(tree); } } //清除掉超平面,是按节点递归地进行的 static void clear_rec(struct kdnode *node, void (*destr)(void*)) { if(!node) return; //一个节点对应一个超平面 //递归函数,递归地清除掉二叉树左分支的超平面和二叉树右分支的超平面 clear_rec(node->left, destr); clear_rec(node->right, destr); //如果data清楚函数不为空,就释放掉data if(destr) { destr(node->data); } //释放节点的坐标数组 free(node->pos); //释放节点 free(node); } //kdtree清除 void kd_clear(struct kdtree *tree) { //清除树中每个节点的超平面,释放树中的各个节点 clear_rec(tree->root, tree->destr); tree->root = 0; //如果树的超平面指针不为空,对其进行释放 if (tree->rect) { hyperrect_free(tree->rect); tree->rect = 0; } } //数据销毁,用一个外来的函数来进行data的销毁 void kd_data_destructor(struct kdtree *tree, void (*destr)(void*)) { //用外来的函数来执行kdtree的销毁函数 tree->destr = destr; } //在一个树节点位置处插入超矩形 static int insert_rec(struct kdnode **nptr, const double *pos, void *data, int dir, int dim) { int new_dir; struct kdnode *node; //如果这个节点是不存在的 if(!*nptr) { //分配一个结点 if(!(node = (kdnode *)malloc(sizeof *node))) { return -1; } if(!(node->pos = (double*)malloc(dim * sizeof *node->pos))) { free(node); return -1; } memcpy(node->pos, pos, dim * sizeof *node->pos); node->data = data; node->dir = dir; node->left = node->right = 0; *nptr = node; return 0; } node = *nptr; new_dir = (node->dir + 1) % dim; if(pos[node->dir] < node->pos[node->dir]) { return insert_rec(&(*nptr)->left, pos, data, new_dir, dim); } return insert_rec(&(*nptr)->right, pos, data, new_dir, dim); } //节点插入操作 //参数为:要进行插入操作的kdtree,要插入的节点坐标,要插入的节点的数据 int kd_insert(struct kdtree *tree, const double *pos, void *data) { //插入超矩形 if (insert_rec(&tree->root, pos, data, 0, tree->dim)) { return -1; } //如果树还没有超矩形,就创建一个超矩形 //如果已经有了超矩形,就扩展原有的超矩形 if (tree->rect == 0) { tree->rect = hyperrect_create(tree->dim, pos, pos); } else { hyperrect_extend(tree->rect, pos); } return 0; } //插入float型坐标的节点 //参数为:要进行插入操作的kdtree,要插入的节点坐标,要插入的节点的数据 //将float型的坐标赋值给double型的缓冲区,经过这个类型转化后进行插入 //本质上是一种类型转化 int kd_insertf(struct kdtree *tree, const float *pos, void *data) { static double sbuf[16]; double *bptr, *buf = 0; int res, dim = tree->dim; //如果kdtree的维数大于16, 分配dim维double类型的数组 if(dim > 16) { #ifndef NO_ALLOCA if(dim <= 256) bptr = buf = (double*)alloca(dim * sizeof *bptr); else #endif if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr))) { return -1; } } //如果kdtree的维数小于16, 直接将指针指向已分配的内存 else { bptr = buf = sbuf; } //将要插入点的位置坐标赋值给分配的数组 while(dim-- > 0) { *bptr++ = *pos++; } //调用节点插入函数kd_insert res = kd_insert(tree, buf, data); #ifndef NO_ALLOCA if(tree->dim > 256) #else if(tree->dim > 16) #endif //释放缓存 free(buf); return res; } //给出三维坐标值的三维kdtree插入 int kd_insert3(struct kdtree *tree, double x, double y, double z, void *data) { double buf[3]; buf[0] = x; buf[1] = y; buf[2] = z; return kd_insert(tree, buf, data); } //给出三维float型坐标值的三维kdtree插入 int kd_insert3f(struct kdtree *tree, float x, float y, float z, void *data) { double buf[3]; buf[0] = x; buf[1] = y; buf[2] = z; return kd_insert(tree, buf, data); } //找到最近邻的点 //参数为:树节点指针, 位置坐标, 阈值, 返回结果的节点, bool型排序,维度 static int find_nearest(struct kdnode *node, const double *pos, double range, struct res_node *list, int ordered, int dim) { double dist_sq, dx; int i, ret, added_res = 0; if(!node) return 0; //注意这个地方,当节点为空的时候,表明已经查找到最终的叶子结点,返回值为零 dist_sq = 0; //计算两个节点间的平方和 for(i=0; i<dim; i++) { dist_sq += SQ(node->pos[i] - pos[i]); } //如果距离在阈值范围内,就将其插入到返回结果链表中 if(dist_sq <= SQ(range)) { if(rlist_insert(list, node, ordered ? dist_sq : -1.0) == -1) { return -1; } added_res = 1; } //在这个节点的划分方向上,求两者之间的差值 dx = pos[node->dir] - node->pos[node->dir]; //根据这个差值的符号, 选择进行递归查找的分支方向 ret = find_nearest(dx <= 0.0 ? node->left : node->right, pos, range, list, ordered, dim); //如果返回的值大于等于零,表明在这个分支中有满足条件的节点,则返回结果的个数进行累加,并在节点的另一个方向进行查找最近的节点 if(ret >= 0 && fabs(dx) < range) { added_res += ret; ret = find_nearest(dx <= 0.0 ? node->right : node->left, pos, range, list, ordered, dim); } if(ret == -1) { return -1; } added_res += ret; return added_res; } //找到最近邻的n个节点 #if 0 static int find_nearest_n(struct kdnode *node, const double *pos, double range, int num, struct rheap *heap, int dim) { double dist_sq, dx; int i, ret, added_res = 0; if(!node) return 0; /* if the photon is close enough, add it to the result heap */ //如果足够近就将其加入到结果堆中 dist_sq = 0; //计算两者间的欧式距离 for(i=0; i<dim; i++) { dist_sq += SQ(node->pos[i] - pos[i]); } //如果计算所得距离小于阈值 if(dist_sq <= range_sq) { //如果堆的大小大于num,也就是大于总的要找的节点数 if(heap->size >= num) { /* get furthest element */ //得到最远的节点 struct res_node *maxelem = rheap_get_max(heap); /* and check if the new one is closer than that */ //测试这个节点是不是比最远的节点要近 if(maxelem->dist_sq > dist_sq) { //如果是的话,就移除最远的节点 rheap_remove_max(heap); //并将此节点插入堆中 if(rheap_insert(heap, node, dist_sq) == -1) { return -1; } added_res = 1; range_sq = dist_sq; } } //如果堆的大小小于num,直接将此节点插入堆中 else { if(rheap_insert(heap, node, dist_sq) == -1) { return =1; } added_res = 1; } } /* find signed distance from the splitting plane */ dx = pos[node->dir] - node->pos[node->dir]; ret = find_nearest_n(dx <= 0.0 ? node->left : node->right, pos, range, num, heap, dim); if(ret >= 0 && fabs(dx) < range) { added_res += ret; ret = find_nearest_n(dx <= 0.0 ? node->right : node->left, pos, range, num, heap, dim); } } #endif static void kd_nearest_i(struct kdnode *node, const double *pos, struct kdnode **result, double *result_dist_sq, struct kdhyperrect* rect) { int dir = node->dir; int i; double dummy, dist_sq; struct kdnode *nearer_subtree, *farther_subtree; double *nearer_hyperrect_coord, *farther_hyperrect_coord; /* Decide whether to go left or right in the tree */ //在二叉树中,决定向左走还是向右走 dummy = pos[dir] - node->pos[dir]; if (dummy <= 0) { nearer_subtree = node->left; farther_subtree = node->right; nearer_hyperrect_coord = rect->max + dir; farther_hyperrect_coord = rect->min + dir; } else { nearer_subtree = node->right; farther_subtree = node->left; nearer_hyperrect_coord = rect->min + dir; farther_hyperrect_coord = rect->max + dir; } if (nearer_subtree) { /* Slice the hyperrect to get the hyperrect of the nearer subtree */ dummy = *nearer_hyperrect_coord; *nearer_hyperrect_coord = node->pos[dir]; /* Recurse down into nearer subtree */ kd_nearest_i(nearer_subtree, pos, result, result_dist_sq, rect); /* Undo the slice */ *nearer_hyperrect_coord = dummy; } /* Check the distance of the point at the current node, compare it * with our best so far */ dist_sq = 0; for(i=0; i < rect->dim; i++) { dist_sq += SQ(node->pos[i] - pos[i]); } if (dist_sq < *result_dist_sq) { *result = node; *result_dist_sq = dist_sq; } if (farther_subtree) { /* Get the hyperrect of the farther subtree */ dummy = *farther_hyperrect_coord; *farther_hyperrect_coord = node->pos[dir]; /* Check if we have to recurse down by calculating the closest * point of the hyperrect and see if it's closer than our * minimum distance in result_dist_sq. */ if (hyperrect_dist_sq(rect, pos) < *result_dist_sq) { /* Recurse down into farther subtree */ kd_nearest_i(farther_subtree, pos, result, result_dist_sq, rect); } /* Undo the slice on the hyperrect */ *farther_hyperrect_coord = dummy; } } //求kdtree中与点pos最近邻的值 struct kdres *kd_nearest(struct kdtree *kd, const double *pos) { struct kdhyperrect *rect; struct kdnode *result; struct kdres *rset; double dist_sq; int i; //如果kd不存在,或者其超平面不存在的话,则就不会有结果 if (!kd) return 0; if (!kd->rect) return 0; /* Allocate result set */ //为返回结果集合分配空间 if(!(rset = (kdres*)malloc(sizeof *rset))) { return 0; } if(!(rset->rlist = (res_node*)alloc_resnode())) { free(rset); return 0; } rset->rlist->next = 0; rset->tree = kd; /* Duplicate the bounding hyperrectangle, we will work on the copy */ //复制边界超平面 if (!(rect = hyperrect_duplicate(kd->rect))) { kd_res_free(rset); return 0; } /* Our first guesstimate is the root node */ result = kd->root; dist_sq = 0; for (i = 0; i < kd->dim; i++) dist_sq += SQ(result->pos[i] - pos[i]); /* Search for the nearest neighbour recursively */ //递归地查找最近邻的邻居 kd_nearest_i(kd->root, pos, &result, &dist_sq, rect); /* Free the copy of the hyperrect */ //释放超矩形 hyperrect_free(rect); /* Store the result */ //存储结果 if (result) { if (rlist_insert(rset->rlist, result, -1.0) == -1) { kd_res_free(rset); return 0; } rset->size = 1; kd_res_rewind(rset); return rset; } else { kd_res_free(rset); return 0; } } //kd_nearest的float特例 struct kdres *kd_nearestf(struct kdtree *tree, const float *pos) { static double sbuf[16]; double *bptr, *buf = 0; int dim = tree->dim; struct kdres *res; if(dim > 16) { #ifndef NO_ALLOCA if(dim <= 256) bptr = buf = (double*)alloca(dim * sizeof *bptr); else #endif if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr))) { return 0; } } else { bptr = buf = sbuf; } while(dim-- > 0) { *bptr++ = *pos++; } res = kd_nearest(tree, buf); #ifndef NO_ALLOCA if(tree->dim > 256) #else if(tree->dim > 16) #endif free(buf); return res; } //kd_nearest的三坐标特例 struct kdres *kd_nearest3(struct kdtree *tree, double x, double y, double z) { double pos[3]; pos[0] = x; pos[1] = y; pos[2] = z; return kd_nearest(tree, pos); } //kd_nearest的三坐标float特例 struct kdres *kd_nearest3f(struct kdtree *tree, float x, float y, float z) { double pos[3]; pos[0] = x; pos[1] = y; pos[2] = z; return kd_nearest(tree, pos); } /* ---- nearest N search ---- */ /* static kdres *kd_nearest_n(struct kdtree *kd, const double *pos, int num) { int ret; struct kdres *rset; if(!(rset = malloc(sizeof *rset))) { return 0; } if(!(rset->rlist = alloc_resnode())) { free(rset); return 0; } rset->rlist->next = 0; rset->tree = kd; if((ret = find_nearest_n(kd->root, pos, range, num, rset->rlist, kd->dim)) == -1) { kd_res_free(rset); return 0; } rset->size = ret; kd_res_rewind(rset); return rset; }*/ //找到满足距离小于range值的节点 struct kdres *kd_nearest_range(struct kdtree *kd, const double *pos, double range) { int ret; struct kdres *rset; if(!(rset = (kdres*)malloc(sizeof *rset))) { return 0; } if(!(rset->rlist = (res_node*)alloc_resnode())) { free(rset); return 0; } rset->rlist->next = 0; rset->tree = kd; if((ret = find_nearest(kd->root, pos, range, rset->rlist, 0, kd->dim)) == -1) { kd_res_free(rset); return 0; } rset->size = ret; kd_res_rewind(rset); return rset; } //kd_nearest_range的float特例 struct kdres *kd_nearest_rangef(struct kdtree *kd, const float *pos, float range) { static double sbuf[16]; double *bptr, *buf = 0; int dim = kd->dim; struct kdres *res; if(dim > 16) { #ifndef NO_ALLOCA if(dim <= 256) bptr = buf = (double*)alloca(dim * sizeof *bptr); else #endif if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr))) { return 0; } } else { bptr = buf = sbuf; } while(dim-- > 0) { *bptr++ = *pos++; } res = kd_nearest_range(kd, buf, range); #ifndef NO_ALLOCA if(kd->dim > 256) #else if(kd->dim > 16) #endif free(buf); return res; } //kd_nearest_range的三坐标特例 struct kdres *kd_nearest_range3(struct kdtree *tree, double x, double y, double z, double range) { double buf[3]; buf[0] = x; buf[1] = y; buf[2] = z; return kd_nearest_range(tree, buf, range); } //kd_nearest_range的三坐标float特例 struct kdres *kd_nearest_range3f(struct kdtree *tree, float x, float y, float z, float range) { double buf[3]; buf[0] = x; buf[1] = y; buf[2] = z; return kd_nearest_range(tree, buf, range); } //返回结果的释放 void kd_res_free(struct kdres *rset) { clear_results(rset); free_resnode(rset->rlist); free(rset); } //获取返回结果集合的大小 int kd_res_size(struct kdres *set) { return (set->size); } //再次回到这个节点本身的位置 void kd_res_rewind(struct kdres *rset) { rset->riter = rset->rlist->next; } //找到返回结果中的最终节点 int kd_res_end(struct kdres *rset) { return rset->riter == 0; } //返回结果列表中的下一个节点 int kd_res_next(struct kdres *rset) { rset->riter = rset->riter->next; return rset->riter != 0; } //将返回结果的节点的坐标和data抽取出来 void *kd_res_item(struct kdres *rset, double *pos) { if(rset->riter) { if(pos) { memcpy(pos, rset->riter->item->pos, rset->tree->dim * sizeof *pos); } return rset->riter->item->data; } return 0; } //将返回结果的节点的坐标和data抽取出来,坐标为float型的值 void *kd_res_itemf(struct kdres *rset, float *pos) { if(rset->riter) { if(pos) { int i; for(i=0; i<rset->tree->dim; i++) { pos[i] = rset->riter->item->pos[i]; } } return rset->riter->item->data; } return 0; } //将返回结果的节点的坐标和data抽取出来,坐标具体形式给出 void *kd_res_item3(struct kdres *rset, double *x, double *y, double *z) { if(rset->riter) { if(*x) *x = rset->riter->item->pos[0]; if(*y) *y = rset->riter->item->pos[1]; if(*z) *z = rset->riter->item->pos[2]; } return 0; } //将返回结果的节点的坐标和data抽取出来,坐标为float型的值,坐标具体形式给出 void *kd_res_item3f(struct kdres *rset, float *x, float *y, float *z) { if(rset->riter) { if(*x) *x = rset->riter->item->pos[0]; if(*y) *y = rset->riter->item->pos[1]; if(*z) *z = rset->riter->item->pos[2]; } return 0; } //获取data数据 void *kd_res_item_data(struct kdres *set) { return kd_res_item(set, 0); } /* ---- hyperrectangle helpers ---- */ //创建超平面,包括三个参数:维度,每维的最小值和最大值数组 static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max) { size_t size = dim * sizeof(double); struct kdhyperrect* rect = 0; if (!(rect = (kdhyperrect*)malloc(sizeof(struct kdhyperrect)))) { return 0; } rect->dim = dim; if (!(rect->min = (double*)malloc(size))) { free(rect); return 0; } if (!(rect->max = (double*)malloc(size))) { free(rect->min); free(rect); return 0; } memcpy(rect->min, min, size); memcpy(rect->max, max, size); return rect; } //释放超平面结构体 static void hyperrect_free(struct kdhyperrect *rect) { free(rect->min); free(rect->max); free(rect); } //赋值超平面结构体 static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect) { return hyperrect_create(rect->dim, rect->min, rect->max); } //更新超平面结构体最大\最小值数组 static void hyperrect_extend(struct kdhyperrect *rect, const double *pos) { int i; for (i=0; i < rect->dim; i++) { if (pos[i] < rect->min[i]) { rect->min[i] = pos[i]; } if (pos[i] > rect->max[i]) { rect->max[i] = pos[i]; } } } //计算固定坐标点与超平面之间的距离 static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos) { int i; double result = 0; for (i=0; i < rect->dim; i++) { if (pos[i] < rect->min[i]) { result += SQ(rect->min[i] - pos[i]); } else if (pos[i] > rect->max[i]) { result += SQ(rect->max[i] - pos[i]); } } return result; } /* ---- static helpers ---- */ #ifdef USE_LIST_NODE_ALLOCATOR /* special list node allocators. */ static struct res_node *free_nodes; #ifndef NO_PTHREADS static pthread_mutex_t alloc_mutex = PTHREAD_MUTEX_INITIALIZER; #endif //创建返回结果节点 static struct res_node *alloc_resnode(void) { struct res_node *node; #ifndef NO_PTHREADS pthread_mutex_lock(&alloc_mutex); #endif if(!free_nodes) { node = malloc(sizeof *node); } else { node = free_nodes; free_nodes = free_nodes->next; node->next = 0; } #ifndef NO_PTHREADS pthread_mutex_unlock(&alloc_mutex); #endif return node; } //释放返回结果节点 static void free_resnode(struct res_node *node) { #ifndef NO_PTHREADS pthread_mutex_lock(&alloc_mutex); #endif node->next = free_nodes; free_nodes = node; #ifndef NO_PTHREADS pthread_mutex_unlock(&alloc_mutex); #endif } #endif /* list node allocator or not */ /* inserts the item. if dist_sq is >= 0, then do an ordered insert */ /* TODO make the ordering code use heapsort */ //函数参数: 返回结果节点指针,树节点指针,距离函数 //将一个结果节点插入到返回结果的列表中 static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq) { struct res_node *rnode; //创建一个返回结果的节点 if(!(rnode = (res_node*)alloc_resnode())) { return -1; } rnode->item = item; //对应的树节点 rnode->dist_sq = dist_sq; //对应的距离值 //当距离大于零的时候 if(dist_sq >= 0.0) { while(list->next && list->next->dist_sq < dist_sq) { list = list->next; } } rnode->next = list->next; list->next = rnode; return 0; } //清除返回结果的集合 //本质上是个双链表中单链表的清理 static void clear_results(struct kdres *rset) { struct res_node *tmp, *node = rset->rlist->next; while(node) { tmp = node; node = node->next; free_resnode(tmp); } rset->rlist->next = 0; }