poj 3685 Matrix (二分+枚举+二分)

Matrix
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 4233   Accepted: 1035

Description

Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.

Input

The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.

Output

For each test case output the answer on a single line.

Sample Input

12

1 1

2 1

2 2

2 3

2 4

3 1

3 2

3 8

3 9

5 1

5 25

5 10

Sample Output

3
-99993
3
12
100007
-199987
-99993
100019
200013
-399969
400031
-99939

Source

POJ Founder Monthly Contest – 2008.08.31, windy7926778 


思路:

1.二分答案,根据矩阵中小于这个数的个数与m的值比较来二分。

2.怎样在矩阵中查找呢?方法也是枚举+二分。仔细观察会发现矩阵每列的值满足单调性(每行不满足),所以想到枚举每列,在每列中找到该列小于这个数的值求和就够了。


ps:二分时注意向上取整还是向下取整,然后注意用long long 就够了。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
//#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 50005
#define mod 1000000000
#define INF 0x3f3f3f3f
using namespace std;

typedef long long ll;
ll n,m,ans;

ll f(ll x,ll y)
{
    return x*x+100000*x+y*y-100000*y+x*y;
}
ll calnum(ll k)
{
    ll i,j;
    ll le,ri,mid,sum=0;
    for(j=1;j<=n;j++)  // 对每列进行枚举
    {
        le=1;
        ri=n+1;
        while(le<ri)   // 找比k小的数
        {
            mid=(le+ri)>>1;
            if(f(mid,j)>=k) ri=mid;
            else le=mid+1;
        }
        sum+=le-1;
    }
    return sum;
}
void solve()
{
    ll le,mid,ri,t;
    ri=1LL<<50;
    le=-ri;
    while(le<ri)  // 二分找答案
    {
        mid=(le+ri)>>1;
        t=calnum(mid);
        if(t>=m) ri=mid;
        else le=mid+1;
    }
    ans=le-1;
}
int main()
{
    int i,j,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld",&n,&m);
        solve();
        printf("%lld\n",ans);
    }
    return 0;
}







你可能感兴趣的:(poj 3685 Matrix (二分+枚举+二分))