POJ 1419 Granph Coloring

         早就听说这是图的独立集问题,可是杨大哥的DFS提醒我还是这样做靠谱,那个算法没学过。

只有黑色的结点被枚举了两次,所以算不了2的次方的复杂度。

代码:

#include<iostream>
#include<string.h>
using namespace std;
bool col[105],map[101][101],a[105];
int n,ans;
bool ok(int i)
{
     for(int j=1;j<=n;j++)
          if( map[i][j]&&col[j])
              return false;
     return true;
}
void DFS(int dep,int now)
{
     if( dep>n){
         if( ans<now){
             ans=now;
             for(int j=1;j<=n;j++)
                  a[j]=col[j];
         }
         return ;
     }
     if( now+n-dep<ans) return;
     if( ok(dep)){   //只有相邻结点都是白色的结点才能染黑。
         col[dep]=true;
         DFS(dep+1,now+1);
         col[dep]=false;
     }
     DFS(dep+1,now);              
}
int main()
{
    int t,m,i,j;
    scanf("%d",&t);
    while( t--){
           scanf("%d%d",&n,&m);
           memset(map,false,sizeof(map));
           memset(col,false,sizeof(col));
           while( m--){
                  scanf("%d%d",&i,&j);
                  map[i][j]=map[j][i]=true;
           }
           ans=0;
           DFS(1,0);
           printf("%d\n",ans);
           bool flag=false;
           for( i=1;i<=n;i++){
                if(a[i]){  
                   if( flag)
                       printf(" ");
                   else
                     flag=true;
                   printf("%d",i);
                 
                }
           }
           printf("\n");
           
    }
           
    return 0;
}



你可能感兴趣的:(POJ 1419 Granph Coloring)