CLJ论文上有讲这题。。。子串出现的次数就是节点的right集合的大小。。。。
#include <iostream> #include <queue> #include <stack> #include <map> #include <set> #include <bitset> #include <cstdio> #include <algorithm> #include <cstring> #include <climits> #include <cstdlib> #include <cmath> #include <time.h> #define maxn 500005 #define maxm 100005 #define eps 1e-7 #define mod 1000000007 #define INF 0x3f3f3f3f #define PI (acos(-1.0)) #define lowbit(x) (x&(-x)) #define mp make_pair #define ls o<<1 #define rs o<<1 | 1 #define lson o<<1, L, mid #define rson o<<1 | 1, mid+1, R #define pii pair<int, int> #pragma comment(linker, "/STACK:16777216") typedef long long LL; typedef unsigned long long ULL; //typedef int LL; using namespace std; LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;} LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;} // head struct node { int len, cnt; node *fa, *next[26]; }*last, *root; node *tp[maxn]; node pool[maxn]; char s[maxn]; int dp[maxn]; int c[maxn]; int tot; node* newnode(int len) { node *p = &pool[tot++]; p->len = len, p->cnt = 0, p->fa = 0; memset(p->next, 0, sizeof p->next); return p; } void init() { tot = 0; root = newnode(0); last = root; memset(c, 0, sizeof c); memset(dp, 0, sizeof dp); } void add(int c) { node *p = last, *np = newnode(p->len + 1); last = np; for(; p && !p->next[c]; p = p->fa) p->next[c] = np; if(!p) np->fa = root; else { node *q = p->next[c]; if(p->len + 1 == q->len) np->fa = q; else { node *nq = newnode(p->len + 1); *nq = *q; nq->len = p->len + 1; q->fa = np->fa = nq; for(; p && p->next[c] == q; p = p->fa) p->next[c] = nq; } } } void read() { init(); scanf("%s", s); for(int i = 0; s[i]; i++) add(s[i] - 'a'); } void work() { int n = strlen(s); node *p = root; for(int i = 0; s[i]; i++) p = p->next[s[i] - 'a'], p->cnt++; for(int i = 0; i < tot; i++) c[pool[i].len]++; for(int i = 1; i < tot; i++) c[i] += c[i-1]; for(int i = 0; i < tot; i++) tp[--c[pool[i].len]] = &pool[i]; for(int i = tot - 1; i > 0; i--) { dp[tp[i]->len] = max(dp[tp[i]->len], tp[i]->cnt); tp[i]->fa->cnt += tp[i]->cnt; } for(int i = n-1; i > 0; i--) dp[i] = max(dp[i], dp[i+1]); for(int i = 1; i <= n; i++) printf("%d\n", dp[i]); } int main() { read(); work(); return 0; }