传送门:【Tsinsen】A1499. Theresa与数据结构
题目分析:三维平面的统计问题,用cdq分治套cdq分治套树状数组会超时= =。。。最后写了一个cdq套树状数组套treap过的。。。。思想和HDU5126一样。
代码如下:
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define lson l , m #define rson m + 1 , r #define mid ( ( l + r ) >> 1 ) const int MAXN = 100005 ; struct Query { int x1 , y1 ; int x2 , y2 ; int z , f , idx ; Query () {} Query ( int x1 , int y1 , int x2 , int y2 , int z , int f , int idx ) : x1 ( x1 ) , y1 ( y1 ) , x2 ( x2 ) , y2 ( y2 ) , z ( z ) , f ( f ) , idx ( idx ) {} } ; struct Node* null ; struct Node { Node* c[2] ; int r ;//greater root int sum ; int v ; int key ; void newnode ( int x , int value ) { r = rand () ; key = x ; sum = v = value ; c[0] = c[1] = null ; } void push_up () { sum = c[0]->sum + v + c[1]->sum ; } } ; Query opp[MAXN * 2] , s[MAXN] , s1[MAXN * 2] , s2[MAXN * 2] ; Node pool[MAXN * 60] ; Node* cur ; Node* T[MAXN << 1] ; int vis[MAXN << 1] , Time ; int a[MAXN << 1] , cnt ; int ans[MAXN] ; int n , m , q ; void rot ( Node* &o , int d ) { Node* ch = o->c[d ^ 1] ; o->c[d ^ 1] = ch->c[d] ; ch->c[d] = o ; o->push_up () ; ch->push_up () ; o = ch ; } void insert ( Node* &o , int x , int v ) { if ( o == null ) { o = cur ++ ; o->newnode ( x , v ) ; } else if ( o->key == x ) { o->v += v ; } else { int d = ( o->key < x ) ; insert ( o->c[d] , x , v ) ; if ( o->c[d]->r > o->r ) rot ( o , d ^ 1 ) ; } o->push_up () ; } int search ( Node* o , int x , int ans = 0 ) { while ( o != null ) { if ( x < o->key ) { o = o->c[0] ; } else { ans += o->c[0]->sum + o->v ; o = o->c[1] ; } } return ans ; } int unique ( int n ) { int cnt = 1 ; sort ( a + 1 , a + n + 1 ) ; For ( i , 2 , n ) if ( a[i] != a[cnt] ) a[++ cnt] = a[i] ; return cnt ; } int hash ( int x , int l = 1 , int r = cnt ) { while ( l < r ) { int m = mid ; if ( a[m] >= x ) r = m ; else l = m + 1 ; } return l ; } int cmpz ( const Query& a , const Query& b ) { if ( a.z != b.z ) return a.z < b.z ; return a.idx < b.idx ; } void add ( int x , int y , int v ) { for ( int i = x ; i <= cnt ; i += i & -i ) { if ( vis[i] != Time ) { T[i] = null ; vis[i] = Time ; } insert ( T[i] , y , v ) ; } } int sum ( int x , int y , int ans = 0 ) { for ( int i = x ; i > 0 ; i -= i & -i ) if ( vis[i] == Time ) ans += search ( T[i] , y ) ; return ans ; } void cdq_fz ( int l , int r ) { if ( r <= l ) return ; int m = mid , top1 = 0 , top2 = 0 , j = 0 ; cdq_fz ( lson ) ; cdq_fz ( rson ) ; For ( i , m + 1 , r ) if ( opp[i].idx ) s1[top1 ++] = opp[i] ; For ( i , l , m ) if ( opp[i].idx == 0 ) s2[top2 ++] = opp[i] ; sort ( s1 , s1 + top1 , cmpz ) ; sort ( s2 , s2 + top2 , cmpz ) ; ++ Time ; cur = pool + 1 ; rep ( i , 0 , top1 ) { while ( j < top2 && s2[j].z <= s1[i].z ) { add ( s2[j].x2 , s2[j].y2 , s2[j].f ) ; ++ j ; } ans[s1[i].idx] += s1[i].f * sum ( s1[i].x2 , s1[i].y2 ) ; ans[s1[i].idx] -= s1[i].f * sum ( s1[i].x1 - 1 , s1[i].y2 ) ; ans[s1[i].idx] -= s1[i].f * sum ( s1[i].x2 , s1[i].y1 - 1 ) ; ans[s1[i].idx] += s1[i].f * sum ( s1[i].x1 - 1 , s1[i].y1 - 1 ) ; } } void init () { m = 0 ; cnt = 0 ; cur = pool ; null = cur ++ ; null->c[0] = null->c[1] = null ; null->sum = null->v = null->r = 0 ; } void solve () { int x1 , y1 , z1 , x2 , y2 , z2 , r ; char op[10] ; int top = 0 ; init () ; For ( i , 1 , n ) { scanf ( "%d%d%d" , &x1 , &y1 , &z1 ) ; opp[++ m] = Query ( x1 , y1 , x1 , y1 , z1 , 1 , 0 ) ; a[++ cnt] = x1 ; } scanf ( "%d" , &q ) ; For ( i , 1 , q ) { scanf ( "%s" , op ) ; if ( op[0] == 'A' ) { scanf ( "%d%d%d" , &x1 , &y1 , &z1 ) ; opp[++ m] = Query ( x1 , y1 , x1 , y1 , z1 , 1 , 0 ) ; a[++ cnt] = x1 ; s[top ++] = Query ( x1 , y1 , x1 , y1 , z1 , -1 , 0 ) ; ans[i] = -1 ; } else if ( op[0] == 'C' ) { opp[++ m] = s[-- top] ; ans[i] = -1 ; } else { scanf ( "%d%d%d%d" , &x1 , &y1 , &z1 , &r ) ; x2 = x1 + r ; y2 = y1 + r ; z2 = z1 + r ; opp[++ m] = Query ( x1 , y1 , x2 , y2 , z2 , 1 , i ) ; opp[++ m] = Query ( x1 , y1 , x2 , y2 , z1 - 1 , -1 , i ) ; a[++ cnt] = x2 ; a[++ cnt] = x1 - 1 ; ans[i] = 0 ; } } cnt = unique ( cnt ) ; For ( i , 1 , m ) { if ( !opp[i].idx ) opp[i].x1 = opp[i].x2 = hash ( opp[i].x1 ) ; else { opp[i].x1 = hash ( opp[i].x1 - 1 ) + 1 ; opp[i].x2 = hash ( opp[i].x2 ) ; } } cdq_fz ( 1 , m ) ; For ( i , 1 , q ) if ( ~ans[i] ) printf ( "%d\n" , ans[i] ) ; } int main () { Time = 0 ; clr ( vis , 0 ) ; while ( ~scanf ( "%d" , &n ) ) solve () ; return 0 ; }