http://poj.org/problem?id=1724
大致题意:N个城市由R条单向路连通,每条路(S,D)之间有两个因素:路的长度L和路的花费T。现要从城市1到达城市N,求花费在K以内的最短路程。
思路:很明显的dfs(他们都说很明显的spfa。。。)。不过dfs有几点注意的地方:
建立邻接表不能用vector存,要用链表的形式,采用头插法。
dfs的时候,在递归节点v之前,要先预判断一下到达v之后总花费是否大于k,若大于K就跳过,不必再调用v节点,这样会省很多时间。对于路程的处理也同样提前先判断一下。
63ms
#include <stdio.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #define LL long long #define _LL __int64 #define eps 1e-8 using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 110; struct node { int v,l,t; struct node *next; }edge[maxn]; int n,m,k; int vis[maxn]; int ans; void dfs(int u, int cost, int len) { /* 注意不要在这里判断,要在递归前先判断。 if(cost > k) return; if(u == n ) { ans = min(ans,len); return; } */ for(struct node *tmp = edge[u].next; tmp!= NULL; tmp = tmp->next) { int v = tmp->v; if(!vis[v] && cost + tmp->t <= k && (len + tmp->l < ans || ans == -1)) //重点:提前判断 { if(v == n) { ans = len + tmp->l; continue; } vis[v] = 1; dfs(v, cost + tmp->t, len + tmp->l); vis[v] = 0; } } } int main() { int s,d,l,t; while(~scanf("%d %d %d",&k,&n,&m)) { for(int i = 1; i <= n; i++) edge[i].next = NULL; for(int i = 1; i <= m; i++) { scanf("%d %d %d %d",&s,&d,&l,&t); struct node *tmp = (struct node *)malloc(sizeof(struct node)); tmp->v = d; tmp->l = l; tmp->t = t; tmp->next = edge[s].next; edge[s].next = tmp; } ans = INF; memset(vis,0,sizeof(vis)); vis[1] = 1; dfs(1,0,0); if(ans == INF) printf("-1\n"); else printf("%d\n",ans); } return 0; }
二维spfa,远没有dfs快啊,329ms.
#include <stdio.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #define LL long long #define _LL __int64 #define eps 1e-8 using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 110; const int maxm = 10010; struct node { int v,l,t; int next; }edge[maxm]; int cnt,head[maxn]; int n,m,k; int dis[maxn][maxm+10]; int inque[maxn]; void init() { cnt = 0; memset(head,-1,sizeof(head)); } void add(int u, int v, int l,int t) { edge[cnt] = (struct node){v,l,t,head[u]}; head[u] = cnt++; } void spfa() { queue <int> que; while(!que.empty()) que.pop(); memset(inque,0,sizeof(inque)); for(int j = 0; j <= k; j++) dis[1][j] = 0; for(int i = 2; i <= n; i++) { for(int j = 0; j <= k; j++) dis[i][j] = INF; } inque[1] = 1; que.push(1); while(!que.empty()) { int u = que.front(); que.pop(); inque[u] = 0; for(int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].v; for(int j = edge[i].t; j <= k; j++) { if(dis[v][j] > dis[u][j-edge[i].t] + edge[i].l) { dis[v][j] = dis[u][j-edge[i].t] + edge[i].l; if(!inque[v]) { inque[v] = 1; que.push(v); } } } } } } int main() { int s,d,l,t; while(~scanf("%d %d %d",&k,&n,&m)) { init(); for(int i = 0; i < m; i++) { scanf("%d %d %d %d",&s,&d,&l,&t); add(s,d,l,t); } spfa(); int ans = INF; for(int i = 0; i <= k; i++) { if(dis[n][i] < ans) ans = dis[n][i]; } if(ans == INF) printf("-1\n"); else printf("%d\n",ans); } return 0; }