题目链接:http://codeforces.com/problemset/problem/7/C
A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.
The first line contains three integers A, B and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.
If the required point exists, output its coordinates, otherwise output -1.
2 5 3
6 -3
AX+BY=-C/Z;(-C/Z==GCD(A,B))
AX*Z+BY*Z=-C;
通过扩展欧几里得我们可以求出X,Y来
最后的解为(x*z,y*z);
#include <iostream> #include <cstdio> using namespace std; typedef long long LL; LL x,y; LL ex_gcd(LL a,LL b,LL &x,LL &y) { if(!b){ x=1; y=0; return a; } LL result=ex_gcd(b,a%b,x,y); LL tmp=x-a/b*y; x=y; y=tmp; return result; } int main() { LL a,b,c; while(cin>>a>>b>>c){ LL r=ex_gcd(a,b,x,y); if(c%r!=0){ puts("-1"); } else{ cout<<-x*(c/r)<<" "<<-y*(c/r)<<endl; } } return 0; }