树状数组会MLE。。。。用分块可以nsqrt(n)内解决这个问题。。。
#include <iostream> #include <queue> #include <stack> #include <map> #include <set> #include <bitset> #include <cstdio> #include <algorithm> #include <cstring> #include <climits> #include <cstdlib> #include <cmath> #include <time.h> #define maxn 100005 #define maxm 40005 #define eps 1e-10 #define mod 10000007 #define INF 1e9 #define lowbit(x) (x&(-x)) #define mp make_pair #define ls o<<1 #define rs o<<1 | 1 #define lson o<<1, L, mid #define rson o<<1 | 1, mid+1, R typedef long long LL; typedef unsigned long long ULL; //typedef int LL; using namespace std; LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;} LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;} void scanf(int &__x){__x=0;char __ch=getchar();while(__ch==' '||__ch=='\n')__ch=getchar();while(__ch>='0'&&__ch<='9')__x=__x*10+__ch-'0',__ch = getchar();} LL gcd(LL _a, LL _b){if(!_b) return _a;else return gcd(_b, _a%_b);} //head struct node { int cnt[10][10]; }block[400]; int num[maxn]; char ss[maxn]; int n, s, sn, m; void init(void) { memset(block, 0, sizeof block); } void read(void) { scanf("%d%d", &n, &m); for(int i = 0; i < n; i++) scanf("%d", &num[i]); } void build(void) { s = sqrt((double)n); if(n % s == 0) sn = n / s; else sn = n / s + 1; for(int i = 0; i < n; i++) { int a = i / s, t = num[i]; for(int j = 1; j <= 10; j++) block[a].cnt[j][t % 10]++, t /= 10; } } void work(void) { int ans, ql, qr, d, p, a, b, t, x, v; while(m--) { scanf("%s", ss); if(ss[0] == 'S') { scanf("%d%d", &x, &v); x--; a = x / s, t = num[x]; for(int i = 1; i <= 10; i++) block[a].cnt[i][t % 10]--, t /= 10; num[x] = t = v; for(int i = 1; i <= 10; i++) block[a].cnt[i][t % 10]++, t /= 10; } else { scanf("%d%d%d%d", &ql, &qr, &d, &p); ql--, qr--; a = ql / s, b = qr / s; t = qpow(10, d-1), ans = 0; if(a == b) { for(int i = ql; i <= qr; i++) if(num[i] / t % 10 == p) ans++; } else { for(int i = a+1; i <= b-1; i++) ans += block[i].cnt[d][p]; for(int i = ql; i < (a+1) * s; i++) if(num[i] / t % 10 == p) ans++; for(int i = b * s; i <= qr; i++) if(num[i] / t % 10 == p) ans++; } printf("%d\n", ans); } } } int main(void) { int _; while(scanf("%d", &_)!=EOF) { while(_--) { init(); read(); build(); work(); } } return 0; }