Codeforces Round #192 (Div. 2) E. Graph Reconstruction (随机算法)

E. Graph Reconstruction
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

I have an undirected graph consisting of n nodes, numbered 1 through n. Each node has at most two incident edges. For each pair of nodes, there is at most an edge connecting them. No edge connects a node to itself.

I would like to create a new graph in such a way that:

  • The new graph consists of the same number of nodes and edges as the old graph.
  • The properties in the first paragraph still hold.
  • For each two nodes u and v, if there is an edge connecting them in the old graph, there is no edge connecting them in the new graph.

Help me construct the new graph, or tell me if it is impossible.

Input

The first line consists of two space-separated integers: n and m (1 ≤ m ≤ n ≤ 105), denoting the number of nodes and edges, respectively. Then m lines follow. Each of the m lines consists of two space-separated integers u and v (1 ≤ u, v ≤ nu ≠ v), denoting an edge between nodes u and v.

Output

If it is not possible to construct a new graph with the mentioned properties, output a single line consisting of -1. Otherwise, output exactlym lines. Each line should contain a description of edge in the same way as used in the input format.

Sample test(s)
input
8 7
1 2
2 3
4 5
5 6
6 8
8 7
7 4
output
1 4
4 6
1 6
2 7
7 5
8 5
2 8
input
3 2
1 2
2 3
output
-1
input
5 4
1 2
2 3
3 4
4 1
output
1 3
3 5
5 2
2 4
Note

The old graph of the first example:

Codeforces Round #192 (Div. 2) E. Graph Reconstruction (随机算法)_第1张图片

A possible new graph for the first example:

In the second example, we cannot create any new graph.

The old graph of the third example:

Codeforces Round #192 (Div. 2) E. Graph Reconstruction (随机算法)_第2张图片

A possible new graph for the third example:


题目链接:http://codeforces.com/contest/330/problem/E

题目意思:
给一幅图,图中任意结点的度数至多为2。
让你重构一幅图,要求:图中节点和原来一样,边数数量也一样,任意节点度数至多为2.

解题思路:
随机算法,随机m个点,连成m条边,判断每一条边是否在给定的图里面,在的话,在随机,都不在,则满足题目要求,直接输出就行了。因为每个点的度数最多为2,所以每一个联通块要么是一条线,要么是一个环,所以边的数量最多为n,所以只需要注意m==n的情况就ok了。

感想:一直以为随机算法在ACM中是没什么用的,没想到在有些方面还是蛮有用的。
顺便贴一下随机算法的用法吧:
random_shuffle()算法将序列中的元素进行乱序。该算法需要序列的起点迭代器和终点迭代器来进行乱序操作。用法为  random_shuffle(scores.begin(), scores.end());   而且这个函数是自己随机设定种子的,用起来挺方便的。

代码:
#include <cstdio>
#include <algorithm>
#include <vector>
#define maxn 100005
using namespace std;

int n,m,ans;
int a[maxn];
vector<int>v[maxn];

void solve()
{
    int i,j,k,flag=0,ok,sz,tmp;
    for(i=1; i<=500; i++)     // 随机500次
    {
        ok=1;
        random_shuffle(a+1,a+n+1);
        for(j=1;j<=m;j++)     // 检验排列是否满足条件
        {
            sz=v[a[j]].size();
            for(k=0;k<sz;k++)
            {
                if(j==n) tmp=1;   // 要考虑m==n的情况
                else tmp=j+1;
                if(v[a[j]][k]==a[tmp])
                {
                    ok=0;
                    break ;
                }
            }
        }
        if(ok)
        {
            flag=1;
            for(j=1;j<=m;j++)
            {
                if(j==n) tmp=1;
                else tmp=j+1;
                printf("%d %d\n",a[j],a[tmp]);
            }
            break ;
        }
    }
    if(!flag) printf("-1\n");
}
int main()
{
    int i,j,l,r;
    while(~scanf("%d%d",&n,&m))
    {
        for(i=1; i<=n; i++)
        {
            v[i].clear();
            a[i]=i;
        }
        for(i=1; i<=m; i++)
        {
            scanf("%d%d",&l,&r);
            v[l].push_back(r);
            v[r].push_back(l);
        }
        solve();
    }
    return 0;
}




你可能感兴趣的:(Codeforces Round #192 (Div. 2) E. Graph Reconstruction (随机算法))