- C2远控篇&Golang&Rust&冷门语言&Loader加载器&对抗优势&减少熵值特征
#C2远控-ShellCode-认知&环境1.创建工程时关闭SDL检查2.属性->C/C++->代码生成->运行库->多线程(/MT)如果是debug则设置成MTD3.属性->C/C++->代码生成->禁用安全检查GS4.关闭生成清单属性->链接器->清单文件->生成清单选择否#C2远控-ShellCode-分析&提取ShellCode的本质其实就是一段可以自主运行的代码。它没有任何文件结构,它不
- YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
昵称是6硬币
(持续更新)YOLO深度学习计算机视觉人工智能目标检测图像处理
YOLOv11:ANOVERVIEWOFTHEKEYARCHITECTURALENHANCEMENTS目标检测论文精读(逐段解析)论文地址:https://www.arxiv.org/abs/2410.17725RahimaKhanamandMuhammadHussainUltralytics公司发布CVPR2024论文写的比较简单,比较核心的改进包括:C3K2高效特征提取机制。对C2f模块的改进
- RK3568-适配rgb接口屏幕
Paper_Love
RK3568linux
RK3568适配rgb接口屏幕从芯片手册中我们可以看出RGB显示最大支持1920x1080@60Hz硬件连接R[7:0]8根红色数据线。G[7:0]8根绿色数据线。B[7:0]8根蓝色数据线。DE数据使能线。VSYNC垂直同步信号线。HSYNC水平同步信号线。PCLK像素时钟信号线。DE模式和HV模式RGBLCD一般有两种驱动模式:DE模式和HV模式,这两个模式的区别是DE模式需要用到DE信号线,
- 2.2. 泛函分析讲义I-度量空间概述
吉星照MoMo
实变泛函与测度理论数学建模
泛函分析的三大空间自然是:度量空间、线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的度量空间是Frechet有意识地去引入一种抽象理论,使得这种理论能够将康托尔,沃尔泰拉以及阿尔泽拉等人的工作统一起来.内积空间是在求解积分方程的过程中创造出来的,赋范线性空间是巴拿赫系统地发展了Frechet的思想,以及利用了Hilbert空间l2,
- 实数系的基本定理_11、实数的连续性(1)
weixin_39953102
实数系的基本定理
实数的连续性定理,图片来自网络。实数集合的连续性(简称实数的连续性或者实数的稠密性、实数的完备性)是实数系的一个基本特征,它是微积分学的坚实的理论基础.人们从不同的角度来描述和刻画实数集的完备性,得到了一连串的有关实数的连续性定理,其中包括:确界存在定理,闭区间套定理,单调有界收敛定理,聚点定理,有限覆盖定理,柯西准则,致密性定理等.定理1.1(确界存在定理,简称“确”)有上界数集必有上确界,有下
- 【CATIA的二次开发35】对象Selection部分属性介绍
江树月华
CATIAVBA二次开发CATIA的VBA二次开发CATIAVBACATIA宏CATIAVBA
在CATIAV5的VBA开发中,Selection对象是用户交互的核心组件,用于管理用户在图形区域或特征树中的选择操作。Selection对象是CATIAVBA中的中央交互枢纽,充当用户界面与程序逻辑之间的桥梁。它代表当前在图形区域或特征树中被选中的元素集合,是自动化操作的基础。一、Selection对象属性和方法二、属性分类概览属性类型作用域主要用途ApplicationObject全局获取当前
- 【CATIA的二次开发36】对象Selection选择集管理部分方法介绍01
江树月华
CATIAVBA二次开发CATIA的VBA二次开发CATIAVBACATIA宏CATIAVBA
在CATIAV5的VBA开发中,Selection对象是用户交互的核心组件,用于管理用户在图形区域或特征树中的选择操作。Selection对象是CATIAVBA中的中央交互枢纽,充当用户界面与程序逻辑之间的桥梁。它代表当前在图形区域或特征树中被选中的元素集合,是自动化操作的基础。一、Selection对象属性和方法二、方法分类概览分类方法核心功能选择集管理Add,Remove,Remove2,Cl
- 领域驱动设计实战:高效在线教育平台开发
你一身傲骨怎能输
软件工程领域驱动设计
文章摘要领域驱动设计实战:构建高效的在线教育平台本文系统介绍了领域驱动设计(DDD)在在线教育平台中的应用。核心内容包括:DDD核心理念:以业务领域为中心,通过限界上下文划分复杂系统,实现业务与代码结构一致。领域划分:在线教育平台分为课程管理、用户权限、订单支付等核心领域,各领域通过领域事件或API通信。建模实战:以课程管理为例,设计聚合根(Course)、实体(Chapter)和值对象(Mate
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——2.SimHash算法文本去重实战案例:新闻文章去重场景
SimHash算法文本去重实战案例:新闻文章去重场景一、案例背景与目标二、具体实现步骤与示例1.**待去重文本示例**2.**步骤1:文本预处理与特征提取**3.**步骤2:特征向量化与哈希映射**4.**步骤3:特征向量聚合**5.**步骤4:降维生成SimHash值**6.**步骤5:计算汉明距离与去重判断**三、工程化实现代码(Python简化示例)四、案例总结与优化点一、案例背景与目标假设
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 可达性分析算法Test
ThetaarSofVenice
算法javajvm
可达性分析算法相对于引用计数算法而言,可达性分析算法同样具备实现简单和执行高效等特点,更重要的是,该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生,这个算法目前较为常用。Java语言选择使用可达性分析算法判断对象是否存活。这种类型的垃圾收集通常叫作追踪性垃圾收集(TracingGarbageCollection),它的基本流程如下。可达性分析算法是以GCRoot(根对象)(见
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 材料力学数值方法:有限元法(FEM)在流体力学中的应用_2024-08-04_00-17-21.Tex
chenjj4003
材料力学算法计算机视觉人工智能机器学习网络
材料力学数值方法:有限元法(FEM)在流体力学中的应用绪论有限元法的基本概念有限元法(FiniteElementMethod,FEM)是一种数值计算方法,用于求解复杂的工程问题,如结构力学、热传导、流体力学等。它将连续的物理域离散化为有限数量的、形状规则的子域,即“有限元”。每个子域内的物理量(如位移、压力、温度等)用多项式函数近似表示,通过在每个子域内应用物理定律(如牛顿第二定律、连续性方程等)
- Flutter多设备之响应式布局
harmonyos
Flutter多设备之响应式布局参考鸿蒙原生响应式布局场景,保持相似体验。布局能力使用场景使用说明断点将窗口宽度划分为不同的范围(即断点),监听窗口尺寸变化,当断点改变时同步调整页面布局。依赖扩展库:breakpoint媒体查询媒体查询支持监听窗口宽度、横竖屏、深浅色、设备类型等多种媒体特征,当媒体特征发生改变时同步调整页面布局。直接使用FlutterSDK中MediaQuery,无需额外适配栅格
- 第一章 城市道路工程
泽克
一建市政实务笔记
1.城市道路工程1.1道路结构特征1.城镇道路分类道路网地位、交通功能、对沿线服务功能划分快速路水泥30沥青20砌块混凝土10,石材20完全交通功能服务,必须有中央分隔带主干路水泥30沥青20砌块混凝土10,石材20交通功能为主,连接主要干路,城市道路网的主要骨架,应有中央分隔带次干路水泥20沥青15砌块混凝土10,石材20兼有服务功能,组成干路网,区域交通集散支路水泥20沥青10砌块混凝土10,
- 第一章 城镇道路工程
1.1道路结构特征1.城镇道路分类根据道路在道路网的地位、交通功能、对沿线的服务功能划分*快速路60~100>=43.5-3.75必须有分隔带双、四幅路20年完全交通功能服务*主干路40~60>=43.25-3.5应设三、四幅路20年交通功能为主、城市道路网主要骨架*次干路30~502-43.25-3.5可设单、双幅路15年区域性的交通干道,*支路20~4023.25-3.5不设单幅路10-15年
- KAN-Transfomer——基于新型神经网络KAN的时间序列预测
MatpyMaster
时间序列付费专栏神经网络人工智能深度学习
1.数据集介绍ETT(电变压器温度):由两个小时级数据集(ETTh)和两个15分钟级数据集(ETTm)组成。它们中的每一个都包含2016年7月至2018年7月的七种石油和电力变压器的负载特征。traffic(交通):描述了道路占用率。它包含2015年至2016年旧金山高速公路传感器记录的每小时数据electrity(电力):从2012年到2014年收集了321个客户每小时电力消耗。exchange
- CNN-LSTM神经网络多输入单输出回归预测【MATLAB】
沅_Yuan
炼丹师神经网络cnnlstm
1CNN(卷积神经网络)部分作用:特征提取:CNN主要用于从输入数据中提取空间特征。它能够处理图像、视频帧或其他形式的空间数据。组成部分:卷积层:使用卷积核对输入数据进行卷积操作,生成特征图。激活函数:通常使用ReLU(线性整流单元)激活函数,增加非线性。池化层:通过最大池化(MaxPooling)或平均池化(AveragePooling),减少特征图的尺寸,保留最重要的特征,减少计算复杂度。流程
- DAY 41 简单CNN
冬天给予的预感
cnn人工智能神经网络
知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorch.nnasnnimpo
- Python打卡训练营-Day41-简单CNN
traMpo1ine
cnnpython深度学习
@浙大疏锦行知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)这里相关的概念比较多,如果之前没有学习过复试班强化班中
- 左神算法之二叉树最大路径和问题
岳轩子
左神算法算法深度优先
二叉树最大路径和问题(Java实现)文章目录二叉树最大路径和问题(Java实现)1.题目描述2.问题解释3.解决思路4.代码实现5.总结1.题目描述给定一棵二叉树,其中每个节点都包含一个整型权值。要求计算从根节点到叶节点的所有路径中,权值和最大的值是多少。2.问题解释必须从根节点出发到叶子节点结束需要遍历所有可能的路径找出所有路径和中最大的那个值叶子节点是指没有子节点的节点3.解决思路采用深度优先
- 网安知识“大乱炖“
Lovely_18
网安知识积累
网安知识"大乱炖"Windows安全事件日志常用EventID:EventID含义说明4624登录成功表示用户成功登录系统4625登录失败✅表示登录尝试失败,是暴力破解最关键的日志标志4672特权登录表示具有管理员权限的账户登录(用于检测高权限账户活动)4648显式凭证登录用户在使用runas或远程方式提供用户名/密码登录暴力破解相关日志特征:连续触发大量4625登录失败来自同一个IP或多个IP的
- 深度学习中Embedding原理讲解
zhishidi
ai笔记深度学习embedding人工智能
我们用最直白的方式来理解深度学习中Embedding(嵌入)的概念。核心思想一句话:Embedding就是把一些复杂、离散的东西(比如文字、类别、ID)转换成计算机更容易理解和计算的“数字密码”,这些“数字密码”能代表这个东西的本质特征或含义。为什么需要Embedding?想象一下,你要教计算机认识“苹果”和“橙子”:原始表示(不好用):你告诉计算机:“苹果”的编号是1,“橙子”的编号是2。问题来
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- 【算法笔记】红黑树插入操作
PXM的算法星球
算法笔记算法笔记
红黑树插入与调整详解一、红黑树的五大性质红黑树是一种自平衡的二叉搜索树(BST),其核心特性如下:颜色属性:每个节点非红即黑根属性:根节点必须为黑色叶子属性:所有的NIL叶子节点都是黑色红节点约束:红色节点的子节点必须为黑色(即无连续红节点)黑高平衡:从任一节点到其所有后代叶子节点的路径中,黑色节点数量相等二、插入操作流程阶段1:标准BST插入从根节点开始查找插入位置新节点总是红色按照BST规则插
- 力扣打卡第十五天 层次遍历非递归+递归
??tobenewyorker
算法leetcode职场和发展
102.二叉树的层序遍历给你二叉树的根节点root,返回其节点值的层序遍历。(即逐层地,从左到右访问所有节点)。示例1:输入:root=[3,9,20,null,null,15,7]输出:[[3],[9,20],[15,7]]示例2:输入:root=[1]输出:[[1]]示例3:输入:root=[]输出:[]提示:树中节点数目在范围[0,2000]内-1000>levelOrder(TreeNod
- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- open3d 使用 RANSAC 算法拟合平面
扶子
python点云处理平面pythonopen3d经验分享点云拟合平面
1、功能介绍:一个python代码演示了如何使用open3d和numpy来完成一个完整的点云平面拟合任务。它包括以下几个主要部分:生成符合某一平面方程的随机点云数据、使用RANSAC算法对这些点云进行平面拟合、可视化原始点云和平面拟合结果2、代码部分:importnumpyasnpimportopen3daso3d#生成随机点云np.random.seed(42)n_points=100#假设这些
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p