POJ 3233 Matrix Power Series 矩阵快速幂 + 二分法

给出矩阵A,最大为30*30,给出k, m,求和S

一个简单的矩阵快速幂+二分的题吧,,,最近代码敲得少,,刚好在Hust上看到华科的以前的选拔赛上有这题,就顺便做了一下

代码如下:

Result : Accepted   Memory : 592 KB   Time :  1985 ms

/*
 * Author: Gatevin
 * Created Time:  2014/6/12 12:14:36
 * File Name: hehe.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
using namespace std;
const double eps(1e-8);
typedef long long lint;
#define clr(x) memset( x , 0 , sizeof(x) )
#define sz(v) ((int)(v).size())
#define rep(i, n) for (int i = 0; i < (n); i++)
#define rise(i, a, b) for (int i = (a); i <= (b); i++)
#define fall(i, a, b) for (int i = (a); i >= (b); i--)
#define clrs( x , y ) memset( x , y , sizeof(x) )
int n,mod,k;
struct Matrix
{
    int a[31][31];
    Matrix(){}
};

Matrix operator * (const Matrix &m1, const Matrix &m2)
{
    Matrix mm;
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
        {
            mm.a[i][j] = 0;
            for(int k = 1; k <= n; k++)
            {
                mm.a[i][j] = (mm.a[i][j] + (m1.a[i][k] * m2.a[k][j]) % mod) % mod;
            }
        }
    }
    return mm;
}

Matrix operator + (const Matrix &m1, const Matrix &m2)
{
    Matrix mm;
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
        {
            mm.a[i][j] = (m1.a[i][j] + m2.a[i][j]) % mod;
        }
    }
    return mm;
}

Matrix A,S;

Matrix quick_pow(int pow, Matrix base)//矩阵快速幂
{
    Matrix I;
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= n; j++)
        {
            I.a[i][j] = i == j ? 1 : 0;
        }
    }
    while(pow)
    {
        if(pow & 1)
        {
            I = I * base;
        }
        pow >>= 1;
        base = base*base;
    }
    return I;
}

Matrix Cal(int ppow)//二分法求S
{
    if(ppow == 1) return A;
    Matrix tmp = Cal( ppow/2 );
    Matrix ret = tmp + tmp*quick_pow(ppow/2, A);
    if(ppow & 1)
    {
        ret = ret + quick_pow(ppow, A);
    }
    return ret;
}

int main()
{
   scanf("%d %d %d",&n,&k,&mod);
   for(int i = 1; i <= n; i++)
   {
       for(int j = 1; j <= n; j++)
       {
           scanf("%d",&A.a[i][j]);
       }
   }
   S = Cal(k);
   for(int i = 1; i <= n; i++)
   {
       for(int j = 1; j <= n - 1; j++)
       {
           printf("%d ",S.a[i][j]);
       }
       printf("%d\n",S.a[i][n]);
   }
   return 0;
}


你可能感兴趣的:(poj,Matrix,Dichotomy)