- LangChain入门:使用Python和通义千问打造免费的Qwen大模型聊天机器人
南七小僧
人工智能网站开发AI技术产品经理服务器数据库windows
前言LangChain是一个用于开发由大型语言模型(LargeLanguageModels,简称LLMs)驱动的应用程序的框架。它提供了一个灵活的框架,使得开发者可以构建具有上下文感知能力和推理能力的应用程序,这些应用程序可以利用公司的数据和APIs。这个框架由几个部分组成。LangChain库:Python和JavaScript库。包含了各种组件的接口和集成,一个基本的运行时,用于将这些组件组合
- Unity3D手游多分辨率适配深度解决方案
晴空了无痕
项目解决方案屏幕适配
一、适配核心问题剖析当前移动端设备分辨率呈现多元化发展趋势,主流设备分辨率跨度从720P到4K级别,屏幕宽高比包含16:9、18:9、19.5:9、21:9等多种形态。适配难点主要体现在:UI元素错位:传统固定锚点布局在不同宽高比下出现显示异常画面比例失调:等比缩放导致屏幕空间浪费或内容裁切性能与效果平衡:高分辨率设备资源消耗与低端设备性能瓶颈异形屏适配:刘海屏、挖孔屏等特殊屏幕形态的兼容处理二、
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 友思特新品 | OCT-3D断层扫描成像测量系统OQ StrataScope升级2.0型号!
友思特 机器视觉与光电
机器视觉3dOCT光学相干断层扫描
ProductUpdate!友思特高精度OCT-3D断层扫描成像测量系统推出OQStrataScope升级2.0/R型号!同时,原有的OQStrataScope1.0型号产品将暂时停产。OCT新品简介OQStrataScope2.0是仅用于研究和工业领域应用的光学相干断层扫描系统,可针对高度散射的样品介质增加极深的成像深度。相较于OQLabScope系列,OQStrataScope中心波长可达13
- 泛型擦除和TypeToken
liudachu
java
泛型可以让代码更加通用,但同时也可能会导致一些类型信息在运行时丢失,这就是所谓的类型擦除。Guava的TypeToken帮咱们巧妙地解决了这个问题。第1章:泛型编程的挑战先来说说泛型。在Java中,泛型是一种在编译时进行类型检查的机制。它让咱们能在类、接口、方法中使用类型参数,比如List或者Map。这样的好处是代码更安全,更易读,同时还能重用。但是,泛型也有个大问题——类型擦除。听起来有点高深,
- mysql 统计同一字段不同值的个数
liudachu
Mysql数据库mysql
在一个项目中,制作呃echart图表的时候,遇到一个需求,需要从后端接口获取数据----售票员的姓名和业绩所以需要在订单表中,获取不同售票员的订单数量。订单表解决方案汇总MySQL统计一个列中不同值的数量需求:MySQL统计一个列中不同值的数量,其中origin是用户来源,其中的值有iPhone、Android、Web三种,现在需要分别统计由这三种渠道注册的用户数量。方案1:SELECTcount
- Vue实例 · new Vue()
liudachu
Vue.jsnewVue
十六、Vue实例1.创建一个Vue实例每个Vue应用都是通过用Vue函数创建一个新的Vue实例开始的:varvm=newVue({//选项//当创建一个Vue实例时,你可以传入一个选项对象。})虽然没有完全遵循MVVM模型,但是Vue的设计也受到了它的启发。因此在文档中经常会使用vm(ViewModel的缩写)这个变量名表示Vue实例。一个Vue应用由一个通过newVue创建的根Vue实例,以及可
- 数仓建模—Data Warebase AI 时代数据平台应当的样子
不二人生
数仓建模人工智能数据仓库数仓建模
DataWarebaseAI时代数据平台应当的样子引言:在这个AI技术飞速发展的时代,我们有能力更深入地发掘数据潜在的价值,而数据处理不应当成为阻碍。云原生分布式DataWarebase将开启处理数据的新范式,它让数据的使用返璞归真,不论是存储还是查询,一个系统满足业务全方位数据需求。打破复杂数据架构的束缚,大大降低数据的使用门槛,释放数据潜能,让数据涌现智能。背景近二十年大数据发展史2002年我
- 2025美团最新面试题—Java程序减少GC的设计
程序员共鸣
javajvm开发语言
1.对象复用与池化线程局部变量:通过ThreadLocal缓存线程私有对象,避免竞争。可变对象:优先使用可修改对象(如StringBuilder代替String拼接)。2.减少对象创建避免隐式装箱:使用基本类型(int而非Integer)。优化循环:避免在循环内创建临时对象。静态不可变对象:将常量声明为staticfinal(如配置参数)。3.数据结构优化预分配容量:初始化集合时指定合理大小(如A
- pygmsh 项目常见问题解决方案
葛雨禹
pygmsh项目常见问题解决方案pygmsh:spider_web:GmshforPython项目地址:https://gitcode.com/gh_mirrors/py/pygmsh1.项目基础介绍和主要编程语言项目名称:pygmsh项目简介:pygmsh是一个结合了Gmsh和Python的开源项目。它通过提供Gmsh的Python接口,简化了复杂几何体的创建过程。pygmsh提供了许多有用的抽
- Flink 通过 Chunjun Oracle LogMiner 实时读取 Oracle 变更日志并写入 Doris 的方案
roman_日积跬步-终至千里
#flink实战flinkoracle大数据
文章目录一、技术背景二、关键技术1、OracleLogMiner2、Chunjun的LogMiner关键流程3、修复ChunjunOracleLogMiner问题一、技术背景在大数据实时同步场景中,需要将Oracle数据库的变更数据(CDC)采集并写入ApacheDoris,以支持数据分析、BI报表、实时数据仓库等应用。本方案基于Flink+Chunjun,通过OracleLogMiner解析Re
- numpy学习笔记3:三维数组 np.ones((2, 3, 4)) 的详细解释
宁宁可可
#机器学习#Python基础与进阶numpy学习笔记
numpy学习笔记3:三维数组np.ones((2,3,4))的详细解释以下是关于三维数组np.ones((2,3,4))的详细解释:1.三维数组的形状形状(2,3,4)表示:最外层维度:2个“层”(或“块”);中间维度:每个层有3行;最内层维度:每行有4个元素。可以类比为:2本书(外层),每本书有3页(中间层),每页有4行文字(内层)。2.创建全1三维数组代码示例:importnumpyasnp
- 浏览器开发者工具深度调试指南:从入门到高阶技巧
109702008
编程网络人工智能网络
浏览器开发者工具(DevTools)是现代前端工程师的"瑞士军刀",本文将系统解析其核心功能与实战技巧,助您掌握高效调试的终极奥义。一、基础操作与核心功能1.1工具启动方式快捷键:F12(Win/Linux)|Cmd+Opt+I(Mac)右键菜单:网页任意位置右键→检查(Inspect)移动端调试:启用设备模式(Ctrl+Shift+M)1.2核心面板全景图面板名称核心功能快捷键切换Element
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- python之gmsh划分网格
老歌老听老掉牙
python有限元分析python开发语言gmsh划分网格
Gmsh(GeometryModelingandMeshingSuite)是一个开源的三维有限元网格生成器,它集成了内置的CAD引擎和后处理器。Gmsh的设计目标是提供一个快速、轻量级且用户友好的网格工具,同时具备参数化输入和高级可视化能力。Gmsh围绕几何(geometry)、网格(mesh)、求解器(solver)和后处理(post-processing)四个模块构建,用户可以通过图形用户界面
- 北京数智医保创新竞赛 | 以“智慧”升级医保,智领云BDOS牢筑竞赛“地基”
LinkTime_Cloud
人工智能大数据编程语言数据分析分布式
点击“蓝字”关注我们“任重道远”是对当前医保信息化建设最简明的概括,由于涉及人数多、数据庞大、业务复杂,医保升级之路异常艰难,亟需信息化建设的支持。作为首都,北京面临的医保问题更为错综复杂,例如医疗保障种类繁多,金额巨大,医疗机构举办主体多元,隶属关系复杂,医疗机构药品、耗材用量大,医保服务群体与医保层次多元等等。如此一来,建设高水平的首都医疗保障信息化平台迫在眉睫,但就目前来看,北京医保信息化基
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- 已解决:python多线程使用TensorRT输出为零?附tensorrt推理代码
李卓璐
算法实战python开发语言
我是多个不同类型的模型多线程调用报错。设备:cuda12.1,cudnn8.9.2,tensorrt8.6.11.问题tensorrt的推理没输出???有输入:想要的输出:原因:多进程时,每进程应单独调用importpycuda.driverascuda和cuda.init(),完成初始化CUDA驱动,并需要使用self.cfx.push()和self.cfx.pop()管理CUDA上下文,以保证
- NET Core 大数据处理
Gene Z
.NetC#c#
在.NETCore里处理10万条以上的大数据时,可采用以下几种方式,同时也适用于不同的应用场景。1.批量处理方式借助批量操作一次性处理大量数据,从而减少与数据库或外部系统的交互次数,提高性能。例如,在向数据库插入大量数据时,可使用批量插入操作。应用场景适用于数据导入、数据迁移等场景。比如将CSV文件中的大量数据批量导入到数据库中。2.并行处理方式运用并行编程技术(像Parallel.ForEach
- 探索 LangChain、Hugging Face、LM Studio 等 AI 应用工具
Alex程
langchain人工智能
目录1.LangChainv0.2简介安装概念指南简单试用(1)模型选择(2)基础操作(3)更多操作Runnable调用链的连接Runnable并行自定义函数RunnableLambda额外assign参数(4)langchain.js2.HuggingFace简介如何调用API3.LMStudio简介LMStudio服务器JavaScript/TypeScriptSDK4.Dify.AI简介安装
- 火山云与腾讯云的优势对比
苹果企业签名分发
腾讯云云计算
首先,我需要确定用户的需求是什么。可能他们是在选择云服务提供商,或者在做市场调研。用户可能是企业的IT决策者,或者是开发人员,需要了解哪个平台更适合他们的项目。接下来,我得收集火山云和腾讯云的基本信息。火山云是字节跳动旗下的,虽然进入市场较晚,但可能有字节的技术支持,比如大数据和AI方面的优势。腾讯云作为老牌厂商,生态完善,产品线全,尤其在游戏、社交等领域有优势。需要对比的方面包括:背景与市场地位
- 颠覆想象,余承东官宣,华为3月将推全球首款原生鸿蒙新形态手机
佳晓晓
智能手机python华为scikit-learndjango
家人们,2月24日这一天,科技圈又被华为投下了一颗重磅炸弹!华为常务董事、终端BG董事长、智能汽车解决方案BU董事长余承东发布视频预告,2025年3月,华为将推出一款全新形态的手机,而且它是全球首款为原生鸿蒙而生的产品!这消息一放出来,各大科技论坛、社交平台瞬间就炸了锅,大家都在疯狂猜测这款手机到底长啥样,会有啥黑科技。其实,余承东之前就多次暗示过今年会有让人意想不到的产品问世。早在去年12月25
- 引入 DeepSeek,企业人力成本优化利器
小柔说科技
人工智能大数据软件开发deepseek
AI在销售领域的表现越来越惊艳。在销售成交过程中,从添加微信到完成咨询,AI全程对答如流,流程顺畅,宛如一位经验丰富的销售冠军。试想一下,如果将这样成熟的AI智能体应用到企业中,原本依赖大量人力的销售业绩,或许只需一个AI就能轻松完成。企业甚至可以从100名员工优化到30名、10名,最终迈向无人化运营。AI不仅提升了效率,更开启了企业运营的全新模式。1.AI销售的高效性在这个案例中,AI从客户咨询
- Flume与Couchbase集成原理与实例
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Flume与Couchbase集成原理与实例作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业对数据存储和处理的效率要求越来越高。在数据采集、存储、处理和分析的各个环节,都需要高效、可靠的技术支持。Flume和Couchbase正是这样两种优秀的工具,前者擅长于数据采集和传输,后者擅长于键值存储和文
- Couchbase Analytics 的结构
PersistDZ
数据存储couchbase
CouchbaseAnalytics的结构CouchbaseAnalytics服务专为大规模、并发、复杂的分析查询而设计,同时不会影响事务性工作负载的性能。下面将详细介绍其结构和架构,以帮助您深入理解CouchbaseAnalytics的运作方式。1.Couchbase集群架构CouchbaseServer是一个多维度可扩展的分布式数据库,其核心架构由多个服务组成:数据服务(DataService
- 美团Leaf分布式ID生成器使用教程:号段模式与Snowflake模式详解
Cloud_.
分布式
引言在分布式系统中,生成全局唯一ID是核心需求之一。美团开源的Leaf提供了两种分布式ID生成方案:号段模式(高可用、依赖数据库)和Snowflake模式(高性能、去中心化)。本文将手把手教你如何配置和使用这两种模式,并解析其核心机制。一、Leaf号段模式使用教程1.环境准备数据库:MySQL5.7+Java环境:JDK1.8+Leaf源码:从GitHub克隆Leaf仓库(推荐使用feature/
- java八股文之常见的集合
qq_45923849
java开发语言
一、数组的索引为什么从0开始?寻址公式:数组的首地址+索引乘以存储数据的类型大小在根据数组索引获取元素的时候,会用索引和寻址公式来计算内存所对应的元素数据。如果数组的索引从1开始,寻址公式中,就需要增加一次减法操作(数组的首地址-1),对于CPU来说就多了一次指令,性能会降低。二、数组进行查找操作的时间复杂度如果是通过下标,查询的时间复杂度是O(1)如果不通过下标,和使用的查找方式有关–从头往后顺
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 腾讯云与MongoDB战略合作升级,瞄准AI时代的数据管理服务
CSDN资讯
腾讯云mongodb人工智能
2025年3月20日,腾讯云与MongoDB联合宣布续签战略合作协议,双方将围绕AI时代的技术变革为全球用户提供卓越的数据管理服务。文档数据库MongoDB以其灵活的数据结构、强大的性能和原生的分布式扩展性等特点,成为最受欢迎的NoSQL数据库之一,广泛应用于游戏、社交媒体、电商、金融和物联网等各行各业。在DB-Engines全球数据库排行榜上,MongoDB长期位居NoSQL数据库第一。据了解,
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro