Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
自以为又是一道动态规划的好入门题,动态规划的第一步就是找状态转移方程,这个很重要。当前前提是你得把问题给分析透了。
递归公式为: f(i, j) = min{ f(i-1, j-1), f(i-1, j), f(i, j-1) },决定一个正方形大小的是他的瓶颈,即最小的那个。
显然f(i,0) = f(0, j) = 0;
public int maximalSquare(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0; int max = 0, n = matrix.length, m = matrix[0].length; // dp(i, j) represents the length of the square // whose lower-right corner is located at (i, j) // dp(i, j) = min{ dp(i-1, j-1), dp(i-1, j), dp(i, j-1) } int[][] dp = new int[n + 1][m + 1]; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (matrix[i - 1][j - 1] == '1') { dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1; max = Math.max(max, dp[i][j]); } } } // return the area return max * max; }
并且只有在当前是1的时候才有可能取得最大值,其他情况全是默认0