题目大意:
就是现在对于T(T <= 20)组测试数据, 每组给出一个长度为n(1 <= n <= 100000)的只包含小写字母的字符串, 然后给出m次询问, 第i次询问问的是在各个字母的权值的条件下权值第Ki小的回文串的权值是多少
大致思路:
首先用Manacher算法处理出各个字符为中心的回文半径, 然后由于一个长度为n的字符串中最多只有O(n)个不同的回文串(其实位置不同但序列相同视为相同), 所以可以再利用mx的右移来判断是否可能出现的新的回文串 ( mx 参照2014年国家集训队徐毅论文中Manacher的做法), 对于每一种回文串Hash判重即可
然后对于每一种回文串需要算出其在原串中出现了多少次, 这个问题问题可以用后缀数组二分来解决, 因为在后缀数组中这些后缀串一定是相邻的, 分别二分出左界和右界即可
不过写的时候还是犯了不少小错误...于是debug了好久 = =...
代码如下:
HDU 判定结果:
ZOJ 判定结果:
交ZOJ记得改%I64d为%lld
/* * Author: Gatevin * Created Time: 2015/3/26 19:01:01 * File Name: Chitoge_Kirisaki.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; typedef unsigned long long ulint; #define maxn 100100 #define rank rrank const ulint seed = 50009; const lint mod = 777777777LL; set <ulint> S; ulint H[maxn], xp[maxn]; lint W[maxn], xp2[maxn], w[30], K, cnt[maxn]; char in[maxn], in_new[maxn << 1]; int s[maxn], sa[maxn], R[maxn << 1]; vector<pair<lint, lint> > result; void inithash(int n)//对于原字符串的hash判断回文串种类 { H[0] = in[0] - 'a' + 1; for(int i = 1; i < n; i++) H[i] = H[i - 1]*seed + (ulint)(in[i] - 'a' + 1); return; } ulint askhash(int l, int r) { if(l == 0) return H[r]; return H[r] - H[l - 1]*xp[r - l + 1]; } void initWeight(int n) { W[0] = w[in[0] - 'a']; for(int i = 1; i < n; i++) W[i] = (W[i - 1]*26LL + w[in[i] - 'a']) % mod; return; } lint askWeight(int l, int r) { if(l == 0) return W[r]; return (W[r] - W[l - 1]*xp2[r - l + 1] % mod + mod) % mod; } int wa[maxn], wb[maxn], wv[maxn], Ws[maxn]; int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; } void da(int *r, int *sa, int n, int m) { int *x = wa, *y = wb, *t, i, j, p; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[x[i] = r[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p) { for(p = 0, i = n - j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[wv[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++; } return; } int rank[maxn], height[maxn]; void calheight(int *r, int *sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i++]] = k) for(k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++); return; } int dp[maxn][20]; void initRMQ(int n) { for(int i = 1; i <= n; i++) dp[i][0] = height[i]; for(int j = 1; (1 << j) <= n; j++) for(int i = 1; i + (1 << j) - 1 <= n; i++) dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]); return; } int askRMQ(int a, int b) { //int ra = rank[a], rb = rank[b]; int ra = a, rb = b; if(ra > rb) swap(ra, rb); int k = 0; while((1 << (k + 1)) <= rb - ra + 1) k++; return min(dp[ra][k], dp[rb - (1 << k) + 1][k]); } lint calCnt(int l, int r, int n) { int rl = rank[l]; int L = rl + 1, R = n, mid; lint lmost = rl, rmost = rl; while(L <= R)//向左和向右都二分一次找到左右界 { mid = (L + R) >> 1; if(askRMQ(rl + 1, mid) >= (r - l + 1)) { rmost = mid; L = mid + 1; } else R = mid - 1; } L = 1; R = rl - 1; while(L <= R) { mid = (L + R) >> 1; if(askRMQ(mid + 1, rl) >= (r - l + 1)) { lmost = mid; R = mid - 1; } else L = mid + 1; } return rmost - lmost + 1; } vector <pair<int, int> > pal; void Manacher(char *s, int *R, int n) { S.clear(); int p = 0, mx = 0; R[0] = 1; for(int i = 1; i < n; i++)//第n个字符不要算..没注意这里WA了好几次.... { if(mx > i) R[i] = min(R[2*p - i], mx - i); else R[i] = 1; while(s[i - R[i]] == s[i + R[i]]) R[i]++; if(i + R[i] > mx) { for(int j = mx; j < i + R[i]; j++)//每一次mx的位移都可能是一个新的回文串 { int l = 2*i - j, r = j; l >>= 1; r = (r & 1) ? r >> 1 : (r >> 1) - 1;//对应的回文串的原位置[l, r] if(l > r) continue; ulint hashvalue = askhash(l, r);//hash判断这个回文串是否出现过 set<ulint> :: iterator it = S.find(hashvalue); if(it == S.end()) { S.insert(hashvalue); pal.push_back(make_pair(l, r)); } } mx = i + R[i], p = i; } } return; } int main() { int T; scanf("%d", &T); xp[0] = 1, xp2[0] = 1; for(int i = 1; i < maxn; i++) xp[i] = xp[i - 1]*seed, xp2[i] = xp2[i - 1]*26LL % mod; while(T--) { int n, m; scanf("%d %d", &n, &m); scanf("%s", in); in_new[0] = '@'; s[0] = in[0] - 'a' + 1; for(int i = 0; i < n; i++) in_new[2*i + 1] = in[i], in_new[2*i + 2] = '#', s[i] = in[i] - 'a' + 1; in_new[2*n] = '$'; s[n] = 0; da(s, sa, n + 1, 28); calheight(s, sa, n); initRMQ(n); pal.clear(); inithash(n); Manacher(in_new, R, 2*n); for(int i = pal.size() - 1; i >= 0; i--)//后缀数组二分查找每种回文串的数量 cnt[i] = calCnt(pal[i].first, pal[i].second, n); while(m--) { scanf("%I64d", &K); for(int i = 0; i < 26; i++) scanf("%I64d", w + i); initWeight(n); result.clear(); for(int i = pal.size() - 1; i >= 0; i--)//对第i种回文串类似hash的方法求出权值 { lint weight = askWeight(pal[i].first, (pal[i].first + pal[i].second) >> 1); result.push_back(make_pair(weight, cnt[i])); } sort(result.begin(), result.end()); int now = 0; while(K > result[now].second) K -= result[now].second, now++; printf("%I64d\n", result[now].first); } printf("\n"); } return 0; }