题意是有 N 个正方形,每个正方形给出一条对角线的两个顶点坐标,然后判断他们到指定点的距离的大小关系,按距离从近到远,升序输出这些正方形的编号。
注意,正方形的边可能不和坐标轴平行,还有如果指定点在正方形内部的话,距离认为是 0 。
方法很显然的,根据对角线的两点坐标计算出剩下的两个点,然后计算指定点到这个正方形(凸四边形)的距离,也就是计算点到线段的距离,并取最小值。
代码:
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const int N = 51; const double MAX = 1e8; const double eps = 1e-14; struct point{ double x,y; }; struct square{ point p1,p2; int id; double dist; }s[N]; int dcmp(double x){ if (x < -eps) return -1; else return x > eps; } int cmp(square a,square b){ if(dcmp(a.dist-b.dist)==0)return a.id < b.id; return dcmp(a.dist - b.dist)<0; } double min(double a,double b){ if(dcmp(a-b)==1)return b; return a; } double max(double a,double b){ if(dcmp(a-b)==1)return a; return b; } double dis(point a,point b){ return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } double crossProduct(point a,point b,point c){//向量 ac 在 ab 的方向 return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y); } int pin_convexh(point a,point p[]){//判断点a是否在凸多边形内 int n=4; p[n] = p[0]; p[n+1] = p[1]; for(int i=0; i<n; i++) if( dcmp(crossProduct(p[i],p[i+1],a)*crossProduct(p[i+1],p[i+2],a))==-1 ) return 0; return 1; } double jobs(point p,point l1,point l2){//点 p 到线段 l1l2 的最小距离 point t = p; t.x += l1.y - l2.y; t.y += l2.x - l1.x; if( dcmp( crossProduct(l1,t,p)*crossProduct(l2,t,p) ) != -1 ) //包括点和线段共线 return dcmp(dis(p,l1)-dis(p,l2))==-1 ? dis(p,l1) : dis(p,l2); return fabs( crossProduct(p,l1,l2) )/dis(l1,l2); } point Whirl(double cosl, double sinl, point a, point b){//底边线段ab 绕a逆时针旋转角度A,b->b1,sinl是sinA的值 b.x -= a.x; b.y -= a.y; point c; c.x = b.x * cosl - b.y * sinl + a.x; c.y = b.x * sinl + b.y * cosl + a.y; return c; } double fun(point cent,square ss){ point p[10],mid; mid.x=(ss.p1.x+ss.p2.x)/2.0; mid.y=(ss.p1.y+ss.p2.y)/2.0; p[0]=ss.p1; p[1]=Whirl(0,1,mid,p[0]); p[2]=ss.p2; p[3]=Whirl(0,1,mid,p[2]); if(pin_convexh(cent,p)==1)return 0.0; else { double min_dist=MAX; for(int i=0;i<4;i++) min_dist=min(jobs(cent,p[i],p[i+1]),min_dist); return min_dist; } } int main() { point cent; int n,i; double a,b,c,d; while(~scanf("%d",&n)){ for(i=1;i<=n;i++){ scanf("%lf%lf%lf%lf",&s[i].p1.x,&s[i].p1.y,&s[i].p2.x,&s[i].p2.y); s[i].id=i; } scanf("%lf%lf",¢.x,¢.y); for(i=1;i<=n;i++)s[i].dist=fun(cent,s[i]); sort(s+1,s+n+1,cmp); printf("%d",s[1].id); for(i=2;i<=n;i++)printf(" %d",s[i].id); puts(""); } return 0; }