Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4 0 1 1 AND 1 2 1 OR 3 2 0 AND 3 0 0 XOR
Sample Output
YES
Hint
#include<cstdio> #include<cstring> #include<iostream> #define FOR(i,a,b) for(int i=a;i<=b;++i) #define clr(f,z) memset(f,z,sizeof(f)) using namespace std; const int mm=2010; class Edge { public:int v,next; }; class TWO_SAT { public: int dfn[mm],e_to[mm],stack[mm]; Edge e[mm*mm*2]; int edge,head[mm],top,dfs_clock,bcc; void clear() { edge=0;clr(head,-1); } void add(int u,int v) { e[edge].v=v;e[edge].next=head[u];head[u]=edge++; } void add_my(int x,int xval,int y,int yval) { x=x+x+xval;y=y+y+yval; add(x,y); } void add_clause(int x,int xval,int y,int yval) {///x or y x=x+x+xval; y=y+y+yval; add(x^1,y);add(y^1,x); } void add_con(int x,int xval)//x is xval { x=x+x+xval; add(x^1,x); } int tarjan(int u) { int lowu,lowv; lowu=dfn[u]=++dfs_clock; int v; stack[top++]=u; for(int i=head[u];~i;i=e[i].next) { v=e[i].v; if(!dfn[v]) { lowv=tarjan(v); lowu=min(lowv,lowu); } else if(e_to[v]==-1)//in stack lowu=min(lowu,dfn[v]); } if(dfn[u]==lowu) { ++bcc; do{ v=stack[--top]; e_to[v]=bcc; }while(v!=u); } return lowu; } bool find_bcc(int n) { clr(e_to,-1); clr(dfn,0); bcc=dfs_clock=top=0; FOR(i,0,2*n-1) if(!dfn[i]) tarjan(i); for(int i=0;i<2*n;i+=2) if(e_to[i]==e_to[i^1])return 0; return 1; } }two; int n,m; char s[44]; int main() { int a,b,c,d; while(~scanf("%d%d",&n,&m)) { two.clear(); FOR(i,1,m) { scanf("%d%d%d%s",&a,&b,&c,s); if(s[0]=='A') { if(c) { two.add_clause(a,1,b,1); two.add_clause(a,0,b,1);//imposible a 1 b 0 two.add_clause(a,1,b,0); // two.add_my(a,0,b,1); // two.add_my(a,0,b,0); // two.add_my(b,0,a,1); // two.add_my(b,0,a,0); } else { two.add_clause(a,0,b,0); } } else if(s[0]=='O') { if(c) { two.add_clause(a,1,b,1); } else { two.add_clause(a,0,b,0); two.add_clause(a,1,b,0); two.add_clause(a,0,b,1); // two.add_my(a,1,b,0); // two.add_my(a,1,b,1); // two.add_my(b,1,a,0); // two.add_my(b,1,a,1); } } else if(s[0]=='X') { if(c) { two.add_clause(a,1,b,1); two.add_clause(a,0,b,0); } else { two.add_clause(a,1,b,0); two.add_clause(a,0,b,1); } } } if(two.find_bcc(n*2))printf("YES\n"); else printf("NO\n"); } return 0; }