目录
1.编译配置
2.u-boot.lds连接配置文件
3.Stage1之start.S
4.Stage2之入口start_armboot
1.编译配置
编译前先进行配置:make smdkv210single_config
其中,Makefile中make smdkv210single_config为:
这里使用了Makefile中的替换引用规则,类似常看到的例子 obj=$(srcfiles:%.c=%.o): 由.c得到对应的.o文件.smdkv210single_config : unconfig @$(MKCONFIG) $(@:_config=) arm s5pc11x smdkc110 samsung s5pc110 @echo "TEXT_BASE = 0xc3e00000" > $(obj)board/samsung/smdkc110/config.mk
即得到smdkv210single。
这里$(@:_config=) arm s5pc11x smdkc110 samsung s5pc110都是mkconfig(即@$(MKCONFIG))的参数,mkconfig即根目录下的脚本文件。
执行这句命令后,在include/下生成config.mk和config.h。并且Makefile包含这个config.mk。
config.mk文件:
它指定里CPU架构,CPU型号,板子型号,CPU厂商,SOC??(母鸡啦)ARCH = arm CPU = s5pc11x BOARD = smdkc110 VENDOR = samsung SOC = s5pc110
可以根据上面的这个信息找到对应的代码。比如说CPU代码在cpu/s5pc11x下,板子代码在board/samsung/smdkc110下。
2. u-boot.lds连接配置文件
对于.lds文件,它定义了整个程序编译之后的连接过程,决定了一个可执行程序的各个段的存储位置。u-boot.lds如何指定连接过程?首先它被根目录下config.mk引用,定义如下:LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot.lds。根据这个路径,对于Android210而言,可以找到这个文件位于:board/samsung/smdkc110/u-boot.lds。其次,LDSCRIPT这个变量何时被用到?同样在config.mk中,可以找到:
LDFLAGS += -Bstatic -T $(LDSCRIPT) $(PLATFORM_LDFLAGS)
ifneq ($(TEXT_BASE),)
LDFLAGS += -Ttext $(TEXT_BASE)
endif
-T 参数指定生成可执行文件时ld连接器如何连接,TEXT_BASE是在make smdkv210single_config时写到board/samsung/smdkc110/config.mk中的,值为0xc3e00000。
/* * (C) Copyright 2002 * Gary Jennejohn, DENX Software Engineering, <[email protected]> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm");指定输出可执行文件是elf格式,32位ARM指令,小端 /*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/ OUTPUT_ARCH(arm);指定输出可执行文件的平台为ARM ENTRY(_start);指定输出可执行文件的起始代码段为_start SECTIONS { . = 0x00000000; ;从0x0位置开始 . = ALIGN(4); ;代码以4字节对齐 .text : ;指定代码段 { cpu/s5pc11x/start.o (.text) cpu/s5pc11x/s5pc110/cpu_init.o (.text) board/samsung/smdkc110/lowlevel_init.o (.text) cpu/s5pc11x/onenand_cp.o (.text) cpu/s5pc11x/nand_cp.o (.text) cpu/s5pc11x/movi.o (.text) board/samsung/smdkc110/flash.o (.text) common/secure.o (.text) common/ace_sha1.o (.text) cpu/s5pc11x/pmic.o (.text) *(.text) } . = ALIGN(4); .rodata : { *(.rodata) } ;指定只读数据段 . = ALIGN(4); .data : { *(.data) } ;指定读/写数据段 . = ALIGN(4); .got : { *(.got) } ;指定got段, got段式是uboot自定义的一个段, 非标准段 __u_boot_cmd_start = .; ;把__u_boot_cmd_start赋值为当前位置, 即起始位置 .u_boot_cmd : { *(.u_boot_cmd) } ;指定u_boot_cmd段, uboot把所有的uboot命令放在该段 __u_boot_cmd_end = .; ;把__u_boot_cmd_end赋值为当前位置,即结束位置 . = ALIGN(4); .mmudata : { *(.mmudata) } ;内存管理单元数据段 . = ALIGN(4); __bss_start = .; ;把__bss_start赋值为当前位置,即bss段的开始位置 .bss : { *(.bss) } ;指定bss段 _end = .; ;把_end赋值为当前位置,即bss段的结束位置 }
3.Stage1之start.S
uboot是典型的bootloader之一,大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。u-boot的Stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:
(1)定义入口。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x00000000地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。
(2)设置异常向量(Exception Vector)。
(3)设置CPU的速度、时钟频率及终端控制寄存器。
(4)初始化内存控制器。
(5)将ROM中的程序复制到RAM中。
(6)初始化堆栈。
(7)转到RAM中执行,该工作可使用指令ldr pc来完成。
根据config.mk中CPU的信息,找到对应的cpu目录为cpu/s5pc11x。首先看cpu/s5pc11x/start.S:
其中代码解释引自:http://www.cnblogs.com/Efronc/archive/2012/02/28/2371662.html
/* * armboot - Startup Code for S5PC110/ARM-Cortex CPU-core * * Copyright (c) 2009 Samsung Electronics * * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * Base codes by scsuh (sc.suh) */ #include <config.h> #include <version.h> #if defined(CONFIG_ENABLE_MMU) #include <asm/proc/domain.h> #endif #include <regs.h> #ifndef CONFIG_ENABLE_MMU #ifndef CFG_PHY_UBOOT_BASE #define CFG_PHY_UBOOT_BASE CFG_UBOOT_BASE #endif #endif /* ************************************************************************* * * Jump vector table as in table 3.1 in [1] * ************************************************************************* */ #if defined(CONFIG_EVT1) && !defined(CONFIG_FUSED) //阶段启动相关配置 .word 0x2000 .word 0x0 .word 0x0 .word 0x0 #endif .globl _start _start: b reset //复位入口,此处使用b指令为相对调整,不依赖运行地址 ldr pc, _undefined_instruction //以下进入异常处理函数 ldr pc, _software_interrupt ldr pc, _prefetch_abort ldr pc, _data_abort ldr pc, _not_used ldr pc, _irq ldr pc, _fiq _undefined_instruction: //定义异常处理函数地址 .word undefined_instruction _software_interrupt: .word software_interrupt _prefetch_abort: .word prefetch_abort _data_abort: .word data_abort _not_used: .word not_used _irq: .word irq _fiq: .word fiq _pad: .word 0x12345678 /* now 16*4=64 */ //保证16字节对齐 .global _end_vect _end_vect: .balignl 16,0xdeadbeef //同样是保证16字节对齐,详见.align实验文章 /* ************************************************************************* * * Startup Code (reset vector) 启动代码(复位向量)此处仅进行重要的初始化操作,搬移代码和建立堆栈 * * do important init only if we don't start from memory! * setup Memory and board specific bits prior to relocation. * relocate armboot to ram * setup stack * ************************************************************************* */ _TEXT_BASE: .word TEXT_BASE //TEST_BASE为根目录下Makefile传递进来的参数,具体为0xc3e00000 /* * Below variable is very important because we use MMU in U-Boot. * Without it, we cannot run code correctly before MMU is ON. * by scsuh. //下面的代码非常重要,因为我们使用了MMU,没有这段代码,在MMC开启前我们将不能正确的运行代码 */ _TEXT_PHY_BASE: .word CFG_PHY_UBOOT_BASE //由dram的物理地址0x20000000加上0x3e00000而得,即0x23e00000.这个地址为MMU开启前的物理地址 .globl _armboot_start _armboot_start: .word _start //复位地址,具体为0xc3e00010 /* * These are defined in the board-specific linker script. */ .globl _bss_start _bss_start: .word __bss_start //__bss_start在链接脚本文件中的bss段开始,_end在bss段结尾,用于清零bss端,这两个值在链接时才确定 .globl _bss_end _bss_end: .word _end #if defined(CONFIG_USE_IRQ) //如果使用中断,定义中断栈地址 /* IRQ stack memory (calculated at run-time) */ .globl IRQ_STACK_START IRQ_STACK_START: .word 0x0badc0de /* IRQ stack memory (calculated at run-time) */ .globl FIQ_STACK_START FIQ_STACK_START: .word 0x0badc0de #endif /* * the actual reset code */ reset: /* * set the cpu to SVC32 mode and IRQ & FIQ disable */ @;mrs r0,cpsr @;bic r0,r0,#0x1f @;orr r0,r0,#0xd3 @;msr cpsr,r0 msr cpsr_c, #0xd3 @ I & F disable, Mode: 0x13 - SVC //进入svc模式,中断禁止 /* ************************************************************************* * * CPU_init_critical registers * * setup important registers * setup memory timing * ************************************************************************* */ /* * we do sys-critical inits only at reboot, //仅在关键初始化时执行,而不是在从ram复位时执行 * not when booting from ram! */ cpu_init_crit: #ifndef CONFIG_EVT1 #if 0 bl v7_flush_dcache_all #else bl disable_l2cache //禁止l2cache mov r0, #0x0 @ mov r1, #0x0 @ i mov r3, #0x0 mov r4, #0x0 lp1: mov r2, #0x0 @ j lp2: mov r3, r1, LSL #29 @ r3 = r1(i) <<29 mov r4, r2, LSL #6 @ r4 = r2(j) <<6 orr r4, r4, #0x2 @ r3 = (i<<29)|(j<<6)|(1<<1) orr r3, r3, r4 mov r0, r3 @ r0 = r3 bl CoInvalidateDCacheIndex //清除数据缓存 8 * 1024 add r2, #0x1 @ r2(j)++ cmp r2, #1024 @ r2 < 1024 bne lp2 @ jump to lp2 add r1, #0x1 @ r1(i)++ cmp r1, #8 @ r1(i) < 8 bne lp1 @ jump to lp1 bl set_l2cache_auxctrl //锁定l2cache bl enable_l2cache //使能l2cache地址对齐 #endif #endif bl disable_l2cache //禁止l2cache bl set_l2cache_auxctrl_cycle //锁定l2cache bl enable_l2cache //使能l2cache /* * Invalidate L1 I/D */ mov r0, #0 @ set up for MCR mcr p15, 0, r0, c8, c7, 0 @ invalidate TLBs //禁止TLB mcr p15, 0, r0, c7, c5, 0 @ invalidate icache //禁止指令缓存 /* * disable MMU stuff and caches */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002000 @ clear bits 13 (--V-) bic r0, r0, #0x00000007 @ clear bits 2:0 (-CAM) orr r0, r0, #0x00000002 @ set bit 1 (--A-) Align orr r0, r0, #0x00000800 @ set bit 12 (Z---) BTB mcr p15, 0, r0, c1, c0, 0 //禁止MMC和cache /* Read booting information */ ldr r0, =PRO_ID_BASE ldr r1, [r0,#OMR_OFFSET] bic r2, r1, #0xffffffc1 //读取启动信息 #ifdef CONFIG_VOGUES /* PS_HOLD(GPH0_0) set to output high */ ldr r0, =ELFIN_GPIO_BASE ldr r1, =0x00000001 str r1, [r0, #GPH0CON_OFFSET] ldr r1, =0x5500 str r1, [r0, #GPH0PUD_OFFSET] ldr r1, =0x01 str r1, [r0, #GPH0DAT_OFFSET] #endif /* NAND BOOT */ cmp r2, #0x0 @ 512B 4-cycle //识别各种启动方式,并将识别到的启动识别码写入R3中 moveq r3, #BOOT_NAND cmp r2, #0x2 @ 2KB 5-cycle moveq r3, #BOOT_NAND cmp r2, #0x4 @ 4KB 5-cycle 8-bit ECC moveq r3, #BOOT_NAND cmp r2, #0x6 @ 4KB 5-cycle 16-bit ECC moveq r3, #BOOT_NAND cmp r2, #0x8 @ OneNAND Mux moveq r3, #BOOT_ONENAND /* SD/MMC BOOT */ cmp r2, #0xc moveq r3, #BOOT_MMCSD /* NOR BOOT */ cmp r2, #0x14 moveq r3, #BOOT_NOR #if 0 /* Android C110 BSP uses OneNAND booting! */ /* For second device booting */ /* OneNAND BOOTONG failed */ cmp r2, #0x8 moveq r3, #BOOT_SEC_DEV #endif /* Uart BOOTONG failed */ cmp r2, #(0x1<<4) moveq r3, #BOOT_SEC_DEV ldr r0, =INF_REG_BASE str r3, [r0, #INF_REG3_OFFSET] //将启动标识码写入INF_REG3中 /* * Go setup Memory and board specific bits prior to relocation. //重定位前初始化存储器和板特殊位 */ ldr sp, =0xd0036000 /* end of sram dedicated to u-boot */ //分配给u-boot的sram的结尾 sram为0xd0020000-d003ffff 分配大小为90k sub sp, sp, #12 /* set stack */ mov fp, #0 bl lowlevel_init /* go setup pll,mux,memory */ //调用lowlevel_init函数初始化pll memory等与板子相关的内容 函数位于board目录下 /* To hold max8698 output before releasing power on switch, * set PS_HOLD signal to high */ ldr r0, =0xE010E81C /* PS_HOLD_CONTROL register */ //PS_HOLD输出高电平,PS_HOLD使能。PMIC相关 ldr r1, =0x00005301 /* PS_HOLD output high */ str r1, [r0] /* get ready to call C functions */ ldr sp, _TEXT_PHY_BASE /* setup temp stack pointer */ //建立临时栈指针,内容为0x23e00000 sub sp, sp, #12 mov fp, #0 /* no previous frame, so fp=0 */ /* when we already run in ram, we don't need to relocate U-Boot. * and actually, memory controller must be configured before U-Boot //如果程序已经在ram中运行,我们不需要重新定位u-boot。 * is running in ram. //实际上存储器一定在u-boot在ram中运行前被初始化了 */ ldr r0, =0xff000fff bic r1, pc, r0 /* r0 <- current base addr of code */ //r1=当前PC ldr r2, _TEXT_BASE /* r1 <- original base addr in ram */ bic r2, r2, r0 /* r0 <- current base addr of code */ //r2=定位后运行地址 cmp r1, r2 /* compare r0, r1 */ beq after_copy /* r0 == r1 then skip flash copy */ //如果r1=r2,跳过复制部分 #if defined(CONFIG_EVT1) /* If BL1 was copied from SD/MMC CH2 */ ldr r0, =0xD0037488 ldr r1, [r0] //取0xd0037488地址的值 ldr r2, =0xEB200000 cmp r1, r2 beq mmcsd_boot //如果等于0xEB200000,跳转到mmcsd_boot #endif ldr r0, =INF_REG_BASE //读取存储的INF_REG3中的启动类型 ldr r1, [r0, #INF_REG3_OFFSET] cmp r1, #BOOT_NAND /* 0x0 => boot device is nand */ beq nand_boot cmp r1, #BOOT_ONENAND /* 0x1 => boot device is onenand */ beq onenand_boot cmp r1, #BOOT_MMCSD beq mmcsd_boot cmp r1, #BOOT_NOR beq nor_boot cmp r1, #BOOT_SEC_DEV beq mmcsd_boot nand_boot: mov r0, #0x1000 //以下函数实现代码的搬移 bl copy_from_nand b after_copy onenand_boot: bl onenand_bl2_copy b after_copy mmcsd_boot: #if DELETE ldr sp, _TEXT_PHY_BASE sub sp, sp, #12 mov fp, #0 #endif bl movi_bl2_copy b after_copy nor_boot: bl read_hword b after_copy after_copy: #if defined(CONFIG_ENABLE_MMU) enable_mmu: /* enable domain access */ ldr r5, =0x0000ffff //定义使能域的访问权限 mcr p15, 0, r5, c3, c0, 0 @load domain access register /* Set the TTB register */ ldr r0, _mmu_table_base ldr r1, =CFG_PHY_UBOOT_BASE ldr r2, =0xfff00000 bic r0, r0, r2 orr r1, r0, r1 mcr p15, 0, r1, c2, c0, 0 //将MMU启用前的的mmu_table_base转成sdram中的地址,并写入cp15的c2中 /* Enable the MMU */ mmu_on: mrc p15, 0, r0, c1, c0, 0 //启用mmu orr r0, r0, #1 mcr p15, 0, r0, c1, c0, 0 nop nop nop nop #endif skip_hw_init: /* Set up the stack */ stack_setup: #if defined(CONFIG_MEMORY_UPPER_CODE) ldr sp, =(CFG_UBOOT_BASE + CFG_UBOOT_SIZE - 0x1000) #else ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */ sub r0, r0, #CFG_MALLOC_LEN /* malloc area */ sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */ #if defined(CONFIG_USE_IRQ) sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ) #endif sub sp, r0, #12 /* leave 3 words for abort-stack */ //为取址终止异常预留3个字空间 #endif clear_bss: ldr r0, _bss_start /* find start of bss segment */ ldr r1, _bss_end /* stop here */ mov r2, #0x00000000 /* clear */ clbss_l: str r2, [r0] /* clear loop... */ //清除bss端内存 add r0, r0, #4 cmp r0, r1 ble clbss_l ldr pc, _start_armboot _start_armboot: //第一阶段结束,进入c程序阶段 .word start_armboot #if defined(CONFIG_ENABLE_MMU) _mmu_table_base: .word mmu_table #endif /* * copy U-Boot to SDRAM and jump to ram (from NAND or OneNAND) * r0: size to be compared * Load 1'st 2blocks to RAM because U-boot's size is larger than 1block(128k) size */ .globl copy_from_nand copy_from_nand: push {lr} /* save return address */ mov r9, r0 mov r9, #0x100 /* Compare about 8KB */ bl copy_uboot_to_ram //从nandflash中读取512k到0x23e00000中 tst r0, #0x0 bne copy_failed #if defined(CONFIG_EVT1) ldr r0, =0xd0020000 //iram的起始地址 #else ldr r0, =0xd0030000 //iram的中间地址 #endif ldr r1, _TEXT_PHY_BASE /* 0x23e00000 */ 1: ldr r3, [r0], #4 //取r0+4地址的值到r3中 ldr r4, [r1], #4 //取r1+4地址的值到r4中 teq r3, r4 bne compare_failed /* not matched */ //如果r3和r4不相等,比较失败 subs r9, r9, #4 bne 1b pop {pc} /* all is OK */ //复制成功,返回 copy_failed: nop /* copy from nand failed */ b copy_failed compare_failed: nop /* compare failed */ b compare_failed /* * we assume that cache operation is done before. (eg. cleanup_before_linux()) * actually, we don't need to do anything about cache if not use d-cache in U-Boot * So, in this function we clean only MMU. by scsuh * * void theLastJump(void *kernel, int arch_num, uint boot_params); */ #if defined(CONFIG_ENABLE_MMU) .globl theLastJump theLastJump: mov r9, r0 //保存内核地址 ldr r3, =0xfff00000 ldr r4, _TEXT_PHY_BASE adr r5, phy_last_jump bic r5, r5, r3 orr r5, r5, r4 mov pc, r5 phy_last_jump: /* * disable MMU stuff //关闭MMU */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #0x00002300 /* clear bits 13, 9:8 (--V- --RS) */ bic r0, r0, #0x00000087 /* clear bits 7, 2:0 (B--- -CAM) */ orr r0, r0, #0x00000002 /* set bit 2 (A) Align */ orr r0, r0, #0x00001000 /* set bit 12 (I) I-Cache */ mcr p15, 0, r0, c1, c0, 0 mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */ mov r0, #0 mov pc, r9 //跳转到内核地址 #endif /* ************************************************************************* * * Interrupt handling * ************************************************************************* */ @ @ IRQ stack frame. @ #define S_FRAME_SIZE 72 #define S_OLD_R0 68 #define S_PSR 64 #define S_PC 60 #define S_LR 56 #define S_SP 52 #define S_IP 48 #define S_FP 44 #define S_R10 40 #define S_R9 36 #define S_R8 32 #define S_R7 28 #define S_R6 24 #define S_R5 20 #define S_R4 16 #define S_R3 12 #define S_R2 8 #define S_R1 4 #define S_R0 0 #define MODE_SVC 0x13 #define I_BIT 0x80 /* //定义异常时保存寄存器的宏 * use bad_save_user_regs for abort/prefetch/undef/swi ... * use irq_save_user_regs / irq_restore_user_regs for IRQ/FIQ handling */ .macro bad_save_user_regs sub sp, sp, #S_FRAME_SIZE @ carve out a frame on current user stack stmia sp, {r0 - r12} @ Save user registers (now in svc mode) r0-r12 ldr r2, _armboot_start sub r2, r2, #(CFG_MALLOC_LEN) sub r2, r2, #(CFG_GBL_DATA_SIZE+8) @ set base 2 words into abort stack ldmia r2, {r2 - r3} @ get values for "aborted" pc and cpsr (into parm regs) add r0, sp, #S_FRAME_SIZE @ grab pointer to old stack add r5, sp, #S_SP mov r1, lr stmia r5, {r0 - r3} @ save sp_SVC, lr_SVC, pc, cpsr mov r0, sp @ save current stack into r0 (param register) .endm .macro irq_save_user_regs sub sp, sp, #S_FRAME_SIZE stmia sp, {r0 - r12} @ Calling r0-r12 add r8, sp, #S_PC @ !!!! R8 NEEDS to be saved !!!! a reserved stack spot would be good. stmdb r8, {sp, lr}^ @ Calling SP, LR str lr, [r8, #0] @ Save calling PC mrs r6, spsr str r6, [r8, #4] @ Save CPSR str r0, [r8, #8] @ Save OLD_R0 mov r0, sp .endm .macro irq_restore_user_regs ldmia sp, {r0 - lr}^ @ Calling r0 - lr mov r0, r0 ldr lr, [sp, #S_PC] @ Get PC add sp, sp, #S_FRAME_SIZE subs pc, lr, #4 @ return & move spsr_svc into cpsr .endm .macro get_bad_stack ldr r13, _armboot_start @ setup our mode stack (enter in banked mode) sub r13, r13, #(CFG_MALLOC_LEN) @ move past malloc pool sub r13, r13, #(CFG_GBL_DATA_SIZE+8) @ move to reserved a couple spots for abort stack str lr, [r13] @ save caller lr in position 0 of saved stack mrs lr, spsr @ get the spsr str lr, [r13, #4] @ save spsr in position 1 of saved stack mov r13, #MODE_SVC @ prepare SVC-Mode @ msr spsr_c, r13 msr spsr, r13 @ switch modes, make sure moves will execute mov lr, pc @ capture return pc movs pc, lr @ jump to next instruction & switch modes. .endm .macro get_bad_stack_swi sub r13, r13, #4 @ space on current stack for scratch reg. str r0, [r13] @ save R0's value. ldr r0, _armboot_start @ get data regions start sub r0, r0, #(CFG_MALLOC_LEN) @ move past malloc pool sub r0, r0, #(CFG_GBL_DATA_SIZE+8) @ move past gbl and a couple spots for abort stack str lr, [r0] @ save caller lr in position 0 of saved stack mrs r0, spsr @ get the spsr str lr, [r0, #4] @ save spsr in position 1 of saved stack ldr r0, [r13] @ restore r0 add r13, r13, #4 @ pop stack entry .endm .macro get_irq_stack @ setup IRQ stack ldr sp, IRQ_STACK_START .endm .macro get_fiq_stack @ setup FIQ stack ldr sp, FIQ_STACK_START .endm /* * exception handlers //异常处理句柄 */ .align 5 undefined_instruction: get_bad_stack bad_save_user_regs bl do_undefined_instruction .align 5 software_interrupt: get_bad_stack_swi bad_save_user_regs bl do_software_interrupt .align 5 prefetch_abort: get_bad_stack bad_save_user_regs bl do_prefetch_abort .align 5 data_abort: get_bad_stack bad_save_user_regs bl do_data_abort .align 5 not_used: get_bad_stack bad_save_user_regs bl do_not_used #if defined(CONFIG_USE_IRQ) .align 5 irq: get_irq_stack irq_save_user_regs bl do_irq irq_restore_user_regs .align 5 fiq: get_fiq_stack /* someone ought to write a more effiction fiq_save_user_regs */ irq_save_user_regs bl do_fiq irq_restore_user_regs #else .align 5 irq: get_bad_stack bad_save_user_regs bl do_irq .align 5 fiq: get_bad_stack bad_save_user_regs bl do_fiq #endif .align 5 .global arm_cache_flush arm_cache_flush: mcr p15, 0, r1, c7, c5, 0 @ invalidate I cache mov pc, lr @ back to caller /* * v7_flush_dcache_all() * * Flush the whole D-cache. * * Corrupted registers: r0-r5, r7, r9-r11 * * - mm - mm_struct describing address space */ .align 5 .global v7_flush_dcache_all v7_flush_dcache_all: ldr r0, =0xffffffff mrc p15, 1, r0, c0, c0, 1 @ Read CLIDR ands r3, r0, #0x7000000 mov r3, r3, LSR #23 @ Cache level value (naturally aligned) beq Finished mov r10, #0 Loop1: add r2, r10, r10, LSR #1 @ Work out 3xcachelevel mov r1, r0, LSR r2 @ bottom 3 bits are the Ctype for this level and r1, r1, #7 @ get those 3 bits alone cmp r1, #2 blt Skip @ no cache or only instruction cache at this level mcr p15, 2, r10, c0, c0, 0 @ write the Cache Size selection register mov r1, #0 mcr p15, 0, r1, c7, c5, 4 @ PrefetchFlush to sync the change to the CacheSizeID reg mrc p15, 1, r1, c0, c0, 0 @ reads current Cache Size ID register and r2, r1, #0x7 @ extract the line length field add r2, r2, #4 @ add 4 for the line length offset (log2 16 bytes) ldr r4, =0x3FF ands r4, r4, r1, LSR #3 @ R4 is the max number on the way size (right aligned) clz r5, r4 @ R5 is the bit position of the way size increment ldr r7, =0x00007FFF ands r7, r7, r1, LSR #13 @ R7 is the max number of the index size (right aligned) Loop2: mov r9, r4 @ R9 working copy of the max way size (right aligned) Loop3: orr r11, r10, r9, LSL r5 @ factor in the way number and cache number into R11 orr r11, r11, r7, LSL r2 @ factor in the index number mcr p15, 0, r11, c7, c6, 2 @ invalidate by set/way subs r9, r9, #1 @ decrement the way number bge Loop3 subs r7, r7, #1 @ decrement the index bge Loop2 Skip: add r10, r10, #2 @ increment the cache number cmp r3, r10 bgt Loop1 Finished: mov pc, lr .align 5 .global disable_l2cache disable_l2cache: mrc p15, 0, r0, c1, c0, 1 bic r0, r0, #(1<<1) mcr p15, 0, r0, c1, c0, 1 mov pc, lr .align 5 .global enable_l2cache enable_l2cache: mrc p15, 0, r0, c1, c0, 1 orr r0, r0, #(1<<1) mcr p15, 0, r0, c1, c0, 1 mov pc, lr .align 5 .global set_l2cache_auxctrl set_l2cache_auxctrl: mov r0, #0x0 mcr p15, 1, r0, c9, c0, 2 mov pc, lr .align 5 .global set_l2cache_auxctrl_cycle set_l2cache_auxctrl_cycle: mrc p15, 1, r0, c9, c0, 2 bic r0, r0, #(0x1<<29) bic r0, r0, #(0x1<<21) bic r0, r0, #(0x7<<6) bic r0, r0, #(0x7<<0) mcr p15, 1, r0, c9, c0, 2 mov pc,lr .align 5 CoInvalidateDCacheIndex: ;/* r0 = index */ mcr p15, 0, r0, c7, c6, 2 mov pc,lr #if defined(CONFIG_INTEGRATOR) && defined(CONFIG_ARCH_CINTEGRATOR) /* Use the IntegratorCP function from board/integratorcp/platform.S */ #elif defined(CONFIG_S5PC11X) /* For future usage of S3C64XX*/ #else .align 5 .globl reset_cpu reset_cpu: ldr r1, rstctl /* get addr for global reset reg */ mov r3, #0x2 /* full reset pll+mpu */ str r3, [r1] /* force reset */ mov r0, r0 _loop_forever: b _loop_forever rstctl: .word PM_RSTCTRL_WKUP #endif
State 1最后,调用里start_armboot函数,这个函数是State2的入口函数。
4.Stage2之入口start_armboot
start_armboot函数是纯C写的,位于lib_arm/board.c中。此函数经过一系列的动作之后,最终进入main_loop循环。main_loop位于common/main.c中,它主要用于执行common下定义的一些cmd。在正常启动的情况下,main_loop会在abortboot处等待n秒中(n一般是设置在uboot环境变量中,可以用getenv冲env中读取,一般设置成3s),然后从env中读取bootcmd的值,用run_command执行bootcmd命令。对于原始Android210来讲,bootcmd=nand read C0008000 600000 400000;bootm C0008000。
bootcmd中调用里两个命令,分别是nand和bootm。
nand命令,对应的源文件是common/cmd_nand.c。它的主要功能是...
bootm命令,对应的源文件是common/cmd_bootm.c。命令格式:
U_BOOT_CMD( bootm, CFG_MAXARGS, 1, do_bootm, "bootm - boot application image from memory\n", "[addr [arg ...]]\n - boot application image stored in memory\n" "\tpassing arguments 'arg ...'; when booting a Linux kernel,\n" "\t'arg' can be the address of an initrd image\n" #if defined(CONFIG_OF_LIBFDT) "\tWhen booting a Linux kernel which requires a flat device-tree\n" "\ta third argument is required which is the address of the\n" "\tdevice-tree blob. To boot that kernel without an initrd image,\n" "\tuse a '-' for the second argument. If you do not pass a third\n" "\ta bd_info struct will be passed instead\n" #endif #if defined(CONFIG_FIT) "\t\nFor the new multi component uImage format (FIT) addresses\n" "\tmust be extened to include component or configuration unit name:\n" "\taddr:<subimg_uname> - direct component image specification\n" "\taddr#<conf_uname> - configuration specification\n" "\tUse iminfo command to get the list of existing component\n" "\timages and configurations.\n" #endif );
可以看到命令名为bootm,对应执行函数为do_bootm:
/*******************************************************************/ /* bootm - boot application image from image in memory */ /*******************************************************************/ int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { image_header_t *hdr; ulong addr; ulong iflag; const char *type_name; uint unc_len = CFG_BOOTM_LEN; uint8_t comp, type, os; void *os_hdr; ulong os_data, os_len; ulong image_start, image_end; ulong load_start, load_end; ulong mem_start; phys_size_t mem_size; struct lmb lmb; memset ((void *)&images, 0, sizeof (images)); images.verify = getenv_yesno ("verify"); ........... lmb_reserve(&lmb, load_start, (load_end - load_start)); #if defined(CONFIG_ZIMAGE_BOOT) after_header_check: os = hdr->ih_os; #endif switch (os) { default: /* handled by (original) Linux case */ case IH_OS_LINUX: #ifdef CONFIG_SILENT_CONSOLE fixup_silent_linux(); #endif do_bootm_linux (cmdtp, flag, argc, argv, &images); break; case IH_OS_NETBSD: do_bootm_netbsd (cmdtp, flag, argc, argv, &images); break; ............. return 1; }
其中有do_bootm_linux函数,这个函数是启动kernel的函数。对于Android210来讲,这个文件位于lib_arm/bootm.c中。do_bootm_linux:
void do_bootm_linux (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[], bootm_headers_t *images) { ulong initrd_start, initrd_end; ulong ep = 0; bd_t *bd = gd->bd; char *s; int machid = bd->bi_arch_number; void (*theKernel)(int zero, int arch, uint params); int ret; #ifdef CONFIG_CMDLINE_TAG char *commandline = getenv ("bootargs"); #endif /* find kernel entry point */ if (images->legacy_hdr_valid) { ep = image_get_ep (&images->legacy_hdr_os_copy); #if defined(CONFIG_FIT) } else if (images->fit_uname_os) { ret = fit_image_get_entry (images->fit_hdr_os, images->fit_noffset_os, &ep); if (ret) { puts ("Can't get entry point property!\n"); goto error; } #endif } else { puts ("Could not find kernel entry point!\n"); goto error; } theKernel = (void (*)(int, int, uint))ep; s = getenv ("machid"); if (s) { machid = simple_strtoul (s, NULL, 16); printf ("Using machid 0x%x from environment\n", machid); } ret = boot_get_ramdisk (argc, argv, images, IH_ARCH_ARM, &initrd_start, &initrd_end); if (ret) goto error; show_boot_progress (15); debug ("## Transferring control to Linux (at address %08lx) ...\n", (ulong) theKernel); #if defined (CONFIG_SETUP_MEMORY_TAGS) || \ defined (CONFIG_CMDLINE_TAG) || \ defined (CONFIG_INITRD_TAG) || \ defined (CONFIG_SERIAL_TAG) || \ defined (CONFIG_REVISION_TAG) || \ defined (CONFIG_LCD) || \ defined (CONFIG_VFD) || \ defined (CONFIG_MTDPARTITION) setup_start_tag (bd); #ifdef CONFIG_SERIAL_TAG setup_serial_tag (¶ms); #endif #ifdef CONFIG_REVISION_TAG setup_revision_tag (¶ms); #endif #ifdef CONFIG_SETUP_MEMORY_TAGS setup_memory_tags (bd); #endif #ifdef CONFIG_CMDLINE_TAG setup_commandline_tag (bd, commandline); #endif #ifdef CONFIG_INITRD_TAG if (initrd_start && initrd_end) setup_initrd_tag (bd, initrd_start, initrd_end); #endif #if defined (CONFIG_VFD) || defined (CONFIG_LCD) setup_videolfb_tag ((gd_t *) gd); #endif #ifdef CONFIG_MTDPARTITION setup_mtdpartition_tag(); #endif setup_end_tag (bd); #endif /* we assume that the kernel is in place */ printf ("\nStarting kernel ...\n\n"); #ifdef CONFIG_USB_DEVICE { extern void udc_disconnect (void); udc_disconnect (); } #endif cleanup_before_linux (); theKernel (0, machid, bd->bi_boot_params); /* does not return */ return; error: do_reset (cmdtp, flag, argc, argv); return; }
do_bootm_linux中最后一个参数是bootm_headers_t *images。