题目大意:
就是在M个站中选择至多K个使得N个点被覆盖, 为需要的最小半径
大致思路:
二分答案R, 然后建立N*M的01矩阵判断重复覆盖是否可行
重复覆盖和精确覆盖不同, 每次只会删掉每一列所有相关的1, 而不会将有相关1的行删去, 所以矩阵在减少的速度上没有精确覆盖快, 需要进行剪枝
这里使用一个估价函数f(), 表示单签状况下最好情况需要多少步才能走完, 进行剪枝
代码如下:
Result : Accepted Memory : 1656 KB Time : 62 ms
/* * Author: Gatevin * Created Time: 2015/10/4 18:10:46 * File Name: Sakura_Chiyo.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxnode 4000 #define maxn 60 #define maxm 60 pair<int, int> city[60]; pair<int, int> sta[60]; struct DLX { int n, m, size; int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode]; int H[maxn], S[maxm]; int ansd, ans[maxn]; void init(int _n, int _m) { n = _n; m = _m; for(int i = 0; i <= m; i++) { S[i] = 0; U[i] = D[i] = i; L[i] = i - 1; R[i] = i + 1; } R[m] = 0; L[0] = m; size = m; for(int i = 1; i <= n; i++) H[i] = -1; } void Link(int r, int c) { ++S[Col[++size] = c]; Row[size] = r; D[size] = D[c]; U[D[c]] = size; U[size] = c; D[c] = size; if(H[r] < 0) H[r] = L[size] = R[size] = size; else { R[size] = R[H[r]]; L[R[H[r]]] = size; L[size] = H[r]; R[H[r]] = size; } } void remove(int c)//因为是重复覆盖每次讲某一列的所有1纳入不考虑范围 { //L[R[c]] = L[c]; R[L[c]] = R[c]; for(int i = D[c]; i != c; i = D[i]) L[R[i]] = L[i], R[L[i]] = R[i]; } void resume(int c) { for(int i = U[c]; i != c; i = U[i]) L[R[i]] = R[L[i]] = i; //L[R[c]] = R[L[c]] = c; } bool v[60]; int f()//A*搜索估价函数 { int ret = 0; for(int i = R[0]; i != 0; i = R[i]) v[i] = 1; for(int i = R[0]; i != 0; i = R[i]) if(v[i]) { ret++; v[i] = 0; for(int j = D[i]; j != i; j = D[j]) for(int k = R[j]; k != j; k = R[k]) v[Col[k]] = 0; } return ret; } int Dance(int dep, int K) { if(dep + f() > K) return false; if(R[0] == 0) { return true; } int c = R[0]; for(int i = R[0]; i != 0; i = R[i]) if(S[i] < S[c]) c = i; for(int i = D[c]; i != c; i = D[i]) { for(int j = R[i]; j != i; j = R[j]) remove(j); remove(i); if(Dance(dep + 1, K)) return true; resume(i); for(int j = L[i]; j != i; j = L[j]) resume(j); } return false; } void solve() { int N, M, K; scanf("%d %d %d", &N, &M, &K); for(int i = 1; i <= N; i++) scanf("%d %d", &city[i].first, &city[i].second); for(int j = 1; j <= M; j++) scanf("%d %d", &sta[j].first, &sta[j].second); double L = 0, R = 1500, mid = -1, ans = -1; int cnt = 0; int times = 40; while(L + eps < R && cnt <= times) { cnt++; mid = (L + R) / 2.; init(M, N); for(int i = 1; i <= M; i++) for(int j = 1; j <= N; j++) if((sta[i].first - city[j].first)*(sta[i].first - city[j].first)*1. + (sta[i].second - city[j].second)*(sta[i].second - city[j].second)*1. < mid*mid) Link(i, j); if(Dance(0, K)) { ans = mid; R = mid; } else L = mid; } printf("%.6f\n", ans); return; } }; DLX dlx; int main() { int T; scanf("%d", &T); while(T--) dlx.solve(); return 0; }