题目链接:hdu 5458 Stability
先将操作处理一遍,获得最终图,然后对图进行双联通缩点,剩下的肯定是一棵树,然后将操作逆着做一遍,遇到删边等于是加一条边,加的这条边u,v等于是将两节点路径上的点联通起来变成一个新的双联通分量,在同一个双联通分量中,明显ans=0。所以我们用线段树维护树的每条边权,一开始全为1,每次添加一条边,就将这条路径上的边权值置为0。
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
const int maxn = 3 * 1e4 + 5;
const int maxm = 1e5 + 5;
typedef pair<int,int> pii;
#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)|1)
namespace SegTree {
int lc[maxn<<2], rc[maxn<<2], s[maxn<<2], f[maxn<<2];
void maintain(int u, int v) {
f[u] = v;
s[u] = f[u] * (rc[u] - lc[u] + 1);
}
void pushup(int u) { s[u] = s[lson(u)] + s[rson(u)]; }
void pushdown(int u) {
if (f[u] != -1) {
maintain(lson(u), f[u]);
maintain(rson(u), f[u]);
f[u] = -1;
}
}
void build (int u, int l, int r) {
lc[u] = l, rc[u] = r, f[u] = -1, s[u] = 1;
if (l == r) return;
int mid = (l+r)>>1;
build(lson(u), l, mid);
build(rson(u), mid+1, r);
pushup(u);
}
void modify(int u, int l, int r, int v) {
if (l <= lc[u] && rc[u] <= r) {
maintain(u, v);
return;
}
pushdown(u);
int mid = (lc[u] + rc[u]) >> 1;
if (l <= mid) modify(lson(u), l, r, v);
if (r > mid) modify(rson(u), l, r, v);
pushup(u);
}
int query(int u, int l, int r) {
if (l <= lc[u] && rc[u] <= r)
return s[u];
pushdown(u);
int mid = (lc[u] + rc[u]) >> 1, ret = 0;
if (l <= mid) ret += query(lson(u), l, r);
if (r > mid) ret += query(rson(u), l, r);
pushup(u);
return ret;
}
};
/* 树链剖分*/
namespace TreeChain {
int E, first[maxn], jump[maxn<<1], link[maxn<<1];
int id, idx[maxn], dep[maxn], top[maxn], far[maxn], son[maxn], cnt[maxn];
inline void addEdge(int u, int v) {
link[E] = v;
jump[E] = first[u];
first[u] = E++;
}
void dfs (int u, int pre, int d) {
far[u] = pre;
dep[u] = d;
cnt[u] = 1;
son[u] = 0;
for (int i = first[u]; i + 1; i = jump[i]) {
int v = link[i];
if (v == pre) continue;
dfs(v, u, d + 1);
cnt[u] += cnt[v];
if (cnt[son[u]] < cnt[v])
son[u] = v;
}
}
void dfs (int u, int rot) {
top[u]= rot;
idx[u] = ++id;
if (son[u])
dfs(son[u], rot);
for (int i = first[u]; i + 1; i = jump[i]) {
int v = link[i];
if (v == far[u] || v == son[u]) continue;
dfs(v, v);
}
}
void init (int n, int m, const vector<pii>& edges) {
SegTree::build(1, 1, n);
int u, v;
id = E = 0;
memset(first, -1, sizeof(first));
for (int i = 0; i < m; i++) {
if (edges[i].first == edges[i].second) continue;
addEdge(edges[i].first, edges[i].second);
}
dfs(1, 0, 0);
dfs(1, 1);
}
void modify (int u, int v, int k) {
int p = top[u], q = top[v];
while (p != q) {
if (dep[p] < dep[q]) {
swap(p, q);
swap(u, v);
}
SegTree::modify(1, idx[p], idx[u], k);
u = far[p];
p = top[u];
}
if (dep[u] > dep[v])
swap(u, v);
if (u != v)
SegTree::modify(1, idx[son[u]], idx[v], k);
}
int query (int u, int v) {
int p = top[u], q = top[v], ret = 0;
while (p != q) {
if (dep[p] < dep[q]) {
swap(p, q);
swap(u, v);
}
ret += SegTree::query(1, idx[p], idx[u]);
u = far[p];
p = top[u];
}
if (dep[u] > dep[v])
swap(u, v);
if (u != v)
ret += SegTree::query(1, idx[son[u]], idx[v]);
return ret;
}
};
/* Edge biconneted */
int dfsclock, pre[maxn], iscut[maxm<<1], bccno[maxn], cntbcc;
multiset<pii> chains;
vector<int> G[maxn];
vector<pii> edges;
int dfs (int u, int fa) {
int lowu = pre[u] = ++dfsclock;
for (int i = 0; i < G[u].size(); i++) {
int e = G[u][i];
int v = edges[e].second;
if (!pre[v]) {
int lowv = dfs(v, u);
lowu = min(lowu, lowv);
if (lowv > pre[u])
iscut[e] = iscut[e^1] = 1;
} else if (pre[v] < pre[u] && v != fa)
lowu = min(lowu, pre[v]);
}
return lowu;
}
void dfs (int u) {
bccno[u] = cntbcc;
for (int i = 0; i < G[u].size(); i++) {
int e = G[u][i];
int v = edges[e].second;
if (iscut[e] || bccno[v]) continue;
dfs(v);
}
}
void findEdge (int n) {
dfsclock = cntbcc = 0;
memset(pre, 0, sizeof(pre));
memset(iscut, 0, sizeof(iscut));
for (int i = 1; i <= n; i++)
if (!pre[i]) dfs(i, -1);
memset(bccno, 0, sizeof(bccno));
for (int i = 1; i <= n; i++)
if (!bccno[i]) {
++cntbcc;
dfs(i);
}
}
int N, M, Q, T[maxm], U[maxm], V[maxm];
void init () {
chains.clear();
scanf("%d%d%d", &N, &M, &Q);
int u, v;
for (int i = 1; i <= M; i++) {
scanf("%d%d", &u, &v);
if (u > v) swap(u, v);
chains.insert(make_pair(u, v));
}
for (int i = 1; i <= Q; i++) {
scanf("%d%d%d", &T[i], &U[i], &V[i]);
if (U[i] > V[i]) swap(U[i], V[i]);
if (T[i] == 2) continue;
multiset<pii>::iterator it = chains.find(make_pair(U[i], V[i]));
chains.erase(it);
//chains.erase(make_pair(U[i], V[i]));
}
/* get final graph */
edges.clear();
for (int i = 1; i <= N; i++) G[i].clear();
for (multiset<pii>::iterator i = chains.begin(); i != chains.end(); i++) {
int u = i->first, v = i->second;
//printf("%d %d\n", u, v);
for (int j = 0; j < 2; j++) {
edges.push_back(make_pair(u, v));
G[u].push_back(edges.size()-1);
swap(u, v);
}
}
/* edge biconnected */
findEdge(N);
for (int i = 0; i < edges.size(); i++) {
edges[i].first = bccno[edges[i].first];
edges[i].second = bccno[edges[i].second];
}
sort(edges.begin(), edges.end());
int n = unique(edges.begin(), edges.end()) - edges.begin();
TreeChain::init(cntbcc, n, edges);
}
int main () {
int cas;
scanf("%d", &cas);
for (int kcas = 1; kcas <= cas; kcas++) {
init();
printf("Case #%d:\n", kcas);
vector<int> ans;
for (int i = Q; i; i--) {
if (T[i] == 1)
TreeChain::modify(bccno[U[i]], bccno[V[i]], 0);
else
ans.push_back(TreeChain::query(bccno[U[i]], bccno[V[i]]));
}
for (int i = ans.size()-1; i >= 0; i--)
printf("%d\n", ans[i]);
}
return 0;
}