POJ 3292 Semi-prime H-numbers (变形埃氏筛法)

Semi-prime H-numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7777   Accepted: 3364

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21 
85
789
0

Sample Output

21 0
85 5
789 62

在4n+1域中不断的筛去H-semi、H-composite 最后剩下的就是H-prime   不过同时我们也得了H-semi

然后预处理下 即可

AC代码如下:

//
//	POJ 3292 Semi-prime H-numbers
//
//  Created by TaoSama on 2015-03-31
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>

using namespace std;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int N = 1e6 + 10;

int n, H_num[N], H_semi[N];

void seive() {
    //在4n+1域中 0表示H-prime 1表示H-semi 2表示H-composite
    for(int i = 5; i < N; i += 4) {
        for(int j = 5; j < N; j += 4) {
            long long t = 1LL * i * j;
            if(t >= N) break;
            if(H_num[i] == 0 && H_num[j] == 0) H_num[t] = 1;
            else H_num[t] = 2;
        }
    }
    for(int i = 1; i < N; ++i) {
        H_semi[i] += H_semi[i - 1];
        if(H_num[i] == 1) H_semi[i] ++;
    }
}

int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//	freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    seive();
    while(cin >> n && n) {
        cout << n << ' ' << H_semi[n] << endl;
    }
    return 0;
}



你可能感兴趣的:(POJ 3292 Semi-prime H-numbers (变形埃氏筛法))