uva10397 最小生成树

题目大意:
给出n,然后再给出n个点的坐标,要连接着n个坐标,使得总距离最小,但是有m对点已经连接,输入m,和m组a和b表示a和b两点已经连接。

思路:
最小生成树
kruskal算法和prim算法
已经链接的两点的权值为0

kruskal代码:

#include <cstring>
#include <stdio.h>
#include <iostream>
using namespace std;
#include <algorithm>
#include <cmath>

const int N = 750;
int n,m;
double x[760];
double y[760];
int p[N * N];
double w[760][760];
struct node {
    int x,y;
    double d;
}e[N * N + 10];
int cmp(const node & a,const node & b) {
    return a.d < b.d;
}
int find(int x) {
    int i,j,k = x;
    while(k != p[k]) {
        k = p[k];
    }
    i =  x;
    while( i != k) {
        j = p[i];
        p[i] = k;
        i = j;
    }
    return k;
}
bool Union(int x,int y) {
    int a = find(x);
    int b = find(y);
    if(a == b)
        return false;
    else
        p[a] = b;
    return true;
}
int main() {

    int u,v;
    while(scanf("%d",&n) != EOF) {
        memset(w,0,sizeof(w));
        for(int i = 1; i <= n; i++)
            scanf("%lf %lf",&x[i],&y[i]);
        int num = 0;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                if(i != j) {
                    w[i][j] = sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j]) *(y[i] - y[j])); 
                }
            }
        }
        scanf("%d",&m);
        for(int i = 0; i < m; i++) { 
            scanf("%d %d",&u,&v);
            w[u][v] = w[v][u] = 0;
        }
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n; j++) {
                e[num].x = i;
                e[num].y = j;
                e[num++].d = w[i][j];
            }
        }
        sort(e,e + num,cmp);
        for(int i = 0; i <= n ; i++)
            p[i] = i;
        double sum = 0;
        for(int i = 0; i < num; i++) {
            if(Union(e[i].x,e[i].y))
                sum += e[i].d;
        }
        printf("%.2f\n",sum);
    }
    return 0;
}

prim代码:

#include <iostream>
using namespace std;
#include <cstring>
#include <stdio.h>
#include <cmath>
#define N 760
int n,m;
double minCost[N];
int h[N];
double w[N][N];
double x[N],y[N];
int pre[N];
double Prim() {
    memset(h,0,sizeof(h));
    for(int i = 1; i <= n; i++) {
        minCost[i] = w[1][i];
        pre[i] = 1;
    }
    h[1] = 1;
    double sum = 0;
    for(int i = 0; i < n; i++) {
        int u = -1;
        for(int j = 1; j <= n; j++) {
            if(!h[j]) {
                if(u == -1 || minCost[j] < minCost[u]) {
                    u = j;
                }
            }
        }
        sum +=  w[pre[u]][u];
        h[u] = 1;
        for(int j = 1; j <= n; j++) {
            if(!h[j]) {
                if(minCost[j] > w[u][j]) {
                    minCost[j] = w[u][j];
                    pre[j] = u;
                }
            }
        }

    }
    return sum;

}
int main() {

    int u,v;
    while(scanf("%d",&n) != EOF) {
        for(int i = 1; i <= n; i++)
            scanf("%lf %lf",&x[i],&y[i]);
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n; j++)  {
                    w[i][j] = w[j][i] = sqrt((x[i] - x[j]) *(x[i] - x[j]) + (y[i] - y[j]) *(y[i] - y[j]));
            }
        }
        scanf("%d",&m);
        for(int i = 0; i < m; i++) {
            scanf("%d %d",&u,&v);
            w[u][v] = w[v][u] = 0;
        }
    printf("%.2lf\n",Prim());
    }
    return 0;
}

你可能感兴趣的:(uva10397 最小生成树)