Codeforces Round #308 (Div. 2) E. Vanya and Brackets

E. Vanya and Brackets
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Vanya is doing his maths homework. He has an expression of form , where x1, x2, ..., xn are digits from 1 to 9, and sign  represents either a plus '+' or the multiplication sign '*'. Vanya needs to add one pair of brackets in this expression so that to maximize the value of the resulting expression.

Input

The first line contains expression s (1 ≤ |s| ≤ 5001|s| is odd), its odd positions only contain digits from 1 to 9, and even positions only contain signs  +  and  * .

The number of signs  *  doesn't exceed 15.

Output

In the first line print the maximum possible value of an expression.

Sample test(s)
input
3+5*7+8*4
output
303
input
2+3*5
output
25
input
3*4*5
output
60
Note

Note to the first sample test. 3 + 5 * (7 + 8) * 4 = 303.

Note to the second sample test. (2 + 3) * 5 = 25.

Note to the third sample test. (3 * 4) * 5 = 60 (also many other variants are valid, for instance, (3) * 4 * 5 = 60).

题目要求对一个只有加号乘号的数式加一对括号,要求和最大是多少,*的个数不超过15个,这个问题如果枚举至少也o(n^3),所以复杂度太高,考虑到

*号的个数很少,就可以想到(一定在*号的右边或开始,)一定在*的左边或开始,因为,如果存在这样的式子+(...)+,这括号加的没有意义,不能使等式

变大,如果存在*(....)+这样的式子,我们把)向右移可使式子变大,如果存在+(...)*,我们可以把(向左移使得式子变大,这样,枚举一下,总的复杂度为n*17*17个,足够了!

#define INF			9000000000000000000
#define EPS			(double)1e-9
#define mod			1000000007
#define PI			3.14159265358979
//*******************************************************************************/
#endif
#define N 5005
#define MOD 1000000007
int n,len,leftt[30],leftnum,rightt[30],rightnum;
long long ans;
char str[N],temp[N];
stack<char> opS;
stack<long long> numS;
int getNum(char c){
    if(c == '(')return 3;
    else if(c == '*')return 2;
    else if(c == '+')return 1;
    else if(c == ')')return 0;
    return -1;
}
bool isdigit(char c){
    if(c>='0' && c<='9')return true;
    return false;
}
bool PopCal(){
    char op = opS.top();opS.pop();
    //cout<<op<<endl;
    if(op == '+'){
        long long num1 = numS.top();numS.pop();
        long long num2 = numS.top();numS.pop();
        numS.push(num1 + num2);
    }
    else if(op == '*'){
        long long num1 = numS.top();numS.pop();
        long long num2 = numS.top();numS.pop();
        numS.push(num1 * num2);
    }
    else
        return true;
    return false;
}
long long cal(char s[],int l){
    while(!opS.empty()) opS.pop();
    while(!numS.empty()) numS.pop();
    for(int i=0;i<l;i++){
        if(isdigit(s[i]))
            numS.push(s[i]-'0');
        else {
            while(!opS.empty() && getNum(s[i]) <= getNum(opS.top())){
                if(opS.top() == '(' && s[i]!=')')break;
                if(PopCal())
                    break;
            }
            if(s[i] != ')')
                opS.push(s[i]);
        }
    }
    while(!opS.empty()){
        PopCal();
    }
    return numS.top();
}
int main()
{
    //cout<<cal("3+5*(7+8)*4",11);
    while (SS(str) != EOF)
    {
        len = strlen(str);leftnum = 0;rightnum = 0;leftt[leftnum++] = -1;ans = 0;
        FI(len){
            if(str[i] == '*'){
                leftt[leftnum++] = i;
                rightt[rightnum++] = i;
            }
        }
        rightt[rightnum++] = len;
        FI(leftnum)
        FJ(rightnum){
            if(rightt[j] > leftt[i]){
                int count = 0;
                if(leftt[i] == -1) temp[count++] = '(';
                for(int k=0;k<len;k++){
                    if(k == leftt[i]){
                        temp[count++] = str[k];
                        temp[count++] = '(';
                    }
                    else if(k == rightt[j]){
                        temp[count++] = ')';
                        temp[count++] = str[k];
                    }
                    else {
                        temp[count++] = str[k];
                    }
                }
                if(rightt[j] == len) temp[count++] = ')';
                temp[count] = '\0';
                //printf("%d %d %d %d %s ",i,j,leftt[i],rightt[j],temp);
                ans = max(ans,cal(temp,len+2));
                //cout<<cal(temp,len+2)<<endl;
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}


你可能感兴趣的:(Codeforces Round #308 (Div. 2) E. Vanya and Brackets)