平方剩余

平方剩余

POJ:1808

链接:http://poj.org/problem?id=1808

题意:给定a,n(n为质数) 问 x^2 ≡ a (mod n) 是否有解
   可以用a^((n - 1)/2) ≡ ±1(mod n) 当为1是二次剩余,为-1是非二次剩余


但上述方法仅仅是判断是否有解,下面的方法能够求最小整数解


Ural(Timus) 1132

链接: http://acm.timus.ru/problem.aspx?space=1&num=1132

题意:给定a,n(n为质数) 问 x^2 ≡ a (mod n) 是否有解,如果有解按照从小到大输出解

代码:

typedef long long ll;
using namespace std;
ll pow_mod(ll a, ll n, ll p) {
    ll res = 1;
    while (n) {
        if (n & 1) res = res * a % p;
        n >>= 1;
        a = a * a % p;
    }
    return res;
}
ll legendre(ll a, ll p) {
    return pow_mod(a, (p - 1) >> 1, p);
}
ll mod(ll a, ll p) {
    a %= p;
    if (a < 0) a += p;
    return a;
}
struct node {
    static ll p, omega;
    ll a, b;
    node(ll a, ll b): a(a % p), b(b % p) {}
};
node operator *(const node &p, const node &q) {
    int m = node::p;
    return node(p.a * q.a + p.b * q.b % m * node::omega,
                       p.a * q.b + q.a * p.b);
}
node pow_mod(node a, ll n) {
    node result(1, 0);
    while (n > 0) {
        if ((n & 1) == 1) {
            result = result * a;
        }
        a = a * a;
        n >>= 1;
    }
    return result;
}
ll node::p, node::omega;
ll modsqr(ll a, ll p) {
    if (p == 2) return 1;
    if (legendre(a, p) + 1 == p) return -1;
    if ((((p + 1) >> 1) & 1) == 0) return pow_mod(a, (p + 1) >> 2, p);
    ll a_0 = -1;
    while (true) {
        a_0 = rand() % p;
        if (legendre(mod(a_0 * a_0 - a, p), p) + 1 == p) break;
    }
    node::p = p;
    node::omega = mod(a_0 * a_0 - a, p);
    node ret = pow_mod(node(a_0, 1), (p + 1) >> 1);
    //assert(ret.b == 0);
    return ret.a;
}
int main () {
    int t;
    int a, n;
    scanf("%d", &t);
    while(t--) {
        scanf("%d%d", &a, &n);
        a %= n;
        int x = modsqr(a, n);
        if (x == -1) puts("No root");
        else {
            if (x * 2 > n) x = n - x;
            if (x != n - x) printf("%d %d\n", x, n - x);
            else printf("%d\n", x);
        }
    }
    return 0;
}

你可能感兴趣的:(平方剩余)