题意:给出平面上的n个点,找到一个矩形,使得边界上包含尽量多的点
思路:如果单纯的枚举四条边再计数的话显然时间是不够的,,所以我们可以只枚举上下边界,用on[i],on2[i]表示竖线上位于上下边界之间的点数(区别在on[i]不统计位于上下边界上的点),这样,给定左右边界i,j的时候,矩形边界上的点数为left[j]-left[i]+on[i]+on2[j],当右边界确定的时候,on[i]-left[i]应最大,不断的去维护它的最大值就行了
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 110; struct point{ int x,y; bool operator < (const point &s)const { return x < s.x; } }P[MAXN]; int n,m,y[MAXN],on[MAXN],on2[MAXN],Left[MAXN]; int solve(){ sort(P,P+n); sort(y,y+n); m = unique(y,y+n) - y; if (m <= 2) return n; int ans = 0; for (int a = 0; a < m; a++) for (int b = a+1; b < m; b++){ int ymin = y[a],ymax = y[b]; int k = 0; for (int i = 0; i < n; i++){ if (i == 0 || P[i].x != P[i-1].x){ k++; on[k] = on2[k] = 0; Left[k] = Left[k-1] + on2[k-1] - on[k-1]; } if (P[i].y > ymin && P[i].y < ymax) on[k]++; if (P[i].y >= ymin && P[i].y <= ymax) on2[k]++; } if (k < 2) return n; int M = 0; for (int j = 1; j <= k; j++){ ans = max(ans,Left[j]+on2[j]+M); M = max(M,on[j]-Left[j]); } } return ans; } int main(){ int cas = 0; while (scanf("%d",&n) != EOF && n){ for (int i = 0; i < n; i++){ scanf("%d%d",&P[i].x,&P[i].y); y[i] = P[i].y; } printf("Case %d: %d\n",++cas,solve()); } return 0; }