编辑本段DES工作的基本原理
其入口参数有三个:key、data、mode。 key为加密解密使用的 密钥,data为加密
des算法结构
解密的数据,mode为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,key用于对 数据加密,当模式为解密模式时,key用于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。
编辑本段DES加密算法特点
分组比较短、密钥太短、密码生命周期短、运算速度较慢。
编辑本段主要流程
DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法
des算法流程图
的主流程图如下:
置换规则表
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:
58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。
经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置换的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
功能表
在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把48bit数据变为32bit数据。下面给出选择函数Si(i=1,2......8)的功能表:
选择函数Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
des算法
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法
子密钥Ki(48bit)的生成算法
从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法
des算法
规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。
编辑本段DES算法的应用误区
特点
DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。
应用误区
由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的
des体制加密流程
其中56位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,留下了被人攻击、被人破译的极大隐患。
编辑本段DES算法源程序
/*在我测试的时候发现这个代码的一个问题是
如果加密后的密文里面有00这个字节的话
解密出来的就会是乱码,编译环境vc6.0
vs2008 使用需注意 */
(名为schedle.h的头文件)
#include <windows.h>
DWORDLONG dwlKey_PC_1[64]={
57,49,41,33,25,17,9,
1,58,50,42,34,26,18,
10,2,59,51,43,35,27,
19,11,3,60,52,44,36,
63,55,47,39,31,23,1
三重des算法
5,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4,0};
DWORDLONG dwlKey_PC_2[64]={
14,17,11,24,1,5,
3,28,15,6,21,10,
23,19,12,4,26,8,
16,7,27,20,13,2,
41,52,31,37,47,55,
30,40,51,45,33,48,
44,49,39,56,34,53,
46,42,50,36,29,32,0};
DWORDLONG dwlData_IP[65]={
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,
64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7,0};
DWORDLONG dwlData_Expansion[64]={
32,1,2,3,4,5,
4,5,6,7,8,9,
8,9,10,11,12,13,
12,13,14,15,16,17,
16,17,18,19,20,21,
20,21,22,23,24,25,
24,25,26,27,28,29,
28,29,30,31,32,1,0};
DWORDLONG dwlData_P[33]={
16,7,20,21,
29,12,28,17,
1,15,23,2
子密钥的生成过程
6,
5,18,31,10,
2,8,24,14,
32,27,3,9,
19,13,30,6,
22,11,4,25,0};
DWORDLONG dwlData_FP[65]={
40,8,48,16,56,24,64,32,
39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25,0};
DWORDLONG OS[512]={
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,1
基于DES算法的RFID安全系统设计
4,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
4,11,2,14,15,0,8,13,3,1
des算法图解
2,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
------------------------
(以下为主程序)
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include <conio.h>
#include "Schedle.h"
class CShift{
public:
DWORDLONG mask[16];
int step[16];
CShift(){
for(int i=0;i<16;i++){
step[i]=2;
mask[i]=0xc000000;
}
step[0]=step[1]=step[8]=step[15]=1;
mask[0]=mask[1]=mask[8]=mask[15]=0x8000000;
}
};
class CDES{
public:
CDES(){
m_dwlKey=0;
m_dwlData=0;
ConvertTableToMask(dwlKey_PC_1,64);
//PrintTable(dwlKey_PC_1,7,8);
ConvertTableToMask(dwlKey_PC_2,56);
ConvertTableToMask(dwlData_IP,64);
ConvertTableToMask(dwlData_Expansion,32);
ConvertTableToMask(dwlData_FP,64);
ConvertTableToMask(dwlData_P,32);
Generate_S();
}
void PrintBit(DWORDLONG);
void EncryptKey(char *);
unsigned char* EncryptData(unsigned char *);
unsigned char* DescryptData(unsigned char*);
private:
void ConvertTableToMask(DWORDLONG *,int);
void Generate_S(void);
void PrintTable(DWORDLONG*,int,int);
DWORDLONG ProcessByte(unsigned char*,BOOL);
DWORDLONG PermuteTable(DWORDLONG,DWORDLONG*,int);
void Generate_K(void);
void EncryptKernel(void);
DWORDLONG Generate_B(DWORDLONG,DWORDLONG*);
/*For verify schedule permutation only*/
DWORDLONG UnPermuteTable(DWORDLONG,DWORDLONG*,int);
/**************************************/
DWORDLONG dwlData_S[9][4][16];
CShift m_shift;
DWORDLONG m_dwlKey;
DWORDLONG m_dwlData;
DWORDLONG m_dwl_K[17];
};
void CDES::EncryptKey(char *key){
printf("\nOriginal Key: %s",key);
m_dwlKey=ProcessByte((unsigned char*)key,TRUE);
// PrintBit(m_dwlKey);
m_dwlKey=PermuteTable(m_dwlKey,dwlKey_PC_1,56);
// PrintBit(m_dwlKey);
Generate_K();
// printf("\n******************************************\n");
}
void CDES::Generate_K(void){
DWORDLONG C[17],D[17],tmp;
C[0]=m_dwlKey>>28;
D[0]=m_dwlKey&0xfffffff;
for(int i=1;i<=16;i++){
tmp=(C[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]);
C[i]=((C[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff;
tmp=(D[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]);
D[i]=((D[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff;
m_dwl_K[i]=(C[i]<<28)|D[i];
m_dwl_K[i]=PermuteTable(m_dwl_K[i],dwlKey_PC_2,48);
}
}
DWORDLONG CDES::ProcessByte(unsigned char *key,BOOL shift){
unsigned char tmp;
DWORDLONG byte=0;
int i=0;
while(i<8){
while(*key){
if(byte!=0)
byte<<=8;
tmp=*key;
if(shift)
tmp<<=1;
byte|=tmp;
i++;
key++;
}
if(i<8)
byte<<=8;
i++;
}
return byte;
}
DWORDLONG CDES::PermuteTable(DWORDLONG dwlPara,DWOR
基于des算法的rfid安全系统
DLONG* dwlTable,int nDestLen){
int i=0;
DWORDLONG tmp=0,moveBit;
while(i<nDestLen){
moveBit=1;
if(dwlTable[i]&dwlPara){
moveBit<<=nDestLen-i-1;
tmp|=moveBit;
}
i++;
}
return tmp;
}
DWORDLONG CDES::UnPermuteTable(DWORDLONG dwlPara,DWORDLONG* dwlTable,int nDestLen){
DWORDLONG tmp=0;
int i=nDestLen-1;
while(dwlPara!=0){
if(dwlPara&0x01)
tmp|=dwlTable[i];
dwlPara>>=1;
i--;
}
return tmp;
}
void CDES::PrintTable(DWORDLONG *dwlPara,int col,int row){
int i,j;
for(i=0;i<row;i++){
printf("\n");
getch();
for(j=0;j<col;j++)
PrintBit(dwlPara[i*col+j]);
}
}
void CDES::PrintBit(DWORDLONG bitstream){
char out[76];
int i=0,j=0,space=0;
while(bitstream!=0){
if(bitstream&0x01)
out[i++]='1';
else
out[i++]='0';
j++;
if(j%8==0){
out[i++]=' ';
space++;
}
bitstream=bitstream>>1;
}
out[i]='\0';
strcpy(out,strrev(out));
printf("%s **:%d\n",out,i-space);
}
void CDES::ConvertTableToMask(DWORDLONG *mask,int max){
int i=0;
DWORDLONG nBit=1;
while(mask[i]!=0){
nBit=1;
nBit<<=max-mask[i];
mask[i++]=nBit;
}
}
void CDES::Generate_S(void){
int i;
int j,m,n;
m=n=0;
j=1;
for(i=0;i<512;i++){
dwlData_S[j][m][n]=OS[i];
n=(n+1)%16;
if(!n){
m=(m+1)%4;
if(!m)
j++;
}
}
}
unsigned char * CDES::EncryptData(unsigned char *block){
unsigned char *EncrytedData=new unsigned char(15);
printf("\nOriginal Data: %s\n",block);
m_dwlData=ProcessByte(block,0);
// PrintBit(m_dwlData);
m_dwlData=PermuteTable(m_dwlData,dwlData_IP,64);
EncryptKernel();
// PrintBit(m_dwlData);
DWORDLONG bit6=m_dwlData;
for(int i=0;i<11;i++){
EncrytedData[7-i]=(unsigned char)(bit6&0x3f)+46;
bit6>>=6;
}
EncrytedData[11]='\0';
printf("\nAfter Encrypted: %s",EncrytedData);
for(i=0;i<8;i++){
EncrytedData[7-i]=(unsigned char)(m_dwlData&0xff);
m_dwlData>>=8;
}
EncrytedData[8]='\0';
return EncrytedData;
}
void CDES::EncryptKernel(void){
int i=1;
DWORDLONG L[17],R[17],B[9],EK,PSB;
L[0]=m_dwlData>>32;
R[0]=m_dwlData&0xffffffff;
for(i=1;i<=16;i++){
L[i]=R[i-1];
R[i-1]=PermuteTable(R[i-1],dwlData_Expansion,48); //Expansion R
EK=R[i-1]^m_dwl_K[i]; //E Permutation
PSB=Generate_B(EK,B); //P Permutation
R[i]=L[i-1]^PSB;
}
R[16]<<=32;
m_dwlData=R[16]|L[16];
m_dwlData=PermuteTable(m_dwlData,dwlData_FP,64);
}
unsigned char* CDES::DescryptData(unsigned char *desData){
int i=1;
unsigned char *DescryptedData=new unsigned char(15);
DWORDLONG L[17],R[17],B[9],EK,PSB;
DWORDLONG dataPara;
dataPara=ProcessByte(desData,0);
dataPara=PermuteTable(dataPara,dwlData_IP,64);
R[16]=dataPara>>32;
L[16]=dataPara&0xffffffff;
for(i=16;i>=1;i--){
R[i-1]=L[i];
L[i]=PermuteTable(L[i],dwlData_Expansion,48); //Expansion L
EK=L[i]^m_dwl_K[i]; //E Permutation
PSB=Generate_B(EK,B); //P Permutation
L[i-1]=R[i]^PSB;
}
L[0]<<=32;
dataPara=L[0]|R[0];
dataPara=PermuteTable(dataPara,dwlData_FP,64);
// PrintBit(dataPara);
for(i=0;i<8;i++){
DescryptedData[7-i]=(unsigned char)(dataPara&0xff);
dataPara>>=8;
}
DescryptedData[8]='\0';
printf("\nAfter Decrypted: %s\n",DescryptedData);
return DescryptedData;
}
DWORDLONG CDES::Generate_B(DWORDLONG EKPara,DWORDLONG *block){
int i,m,n;
DWORDLONG tmp=0;
for(i=8;i>0;i--){
block[i]=EKPara&0x3f;
m=(int)(block[i]&0x20)>>4;
m|=block[i]&0x01;
n=(int)(block[i]<<1)>>2;
block[i]=dwlData_S[i][m][n];
EKPara>>=6;
}
for(i=1;i<=8;i++){
tmp|=block[i];
tmp<<=4;
}
tmp>>=4;
tmp=PermuteTable(tmp,dwlData_P,32);
return tmp;
}
void main(void){
CDES des;
des.EncryptKey("12345678");
unsigned char *result=des.EncryptData((unsigned char*)"DemoData");
des.DescryptData(result);
}
[1]