- 从LayerNorm到RMSNorm:深度学习归一化技术的进化!qwen2.5的技术。
KangkangLoveNLP
qwen2.5深度学习人工智能transformerpytorch自然语言处理python神经网络
RMSNorm(RootMeanSquareNormalization,均方根归一化)是一种用于深度学习的归一化技术,是LayerNorm(层归一化)的一种改进。它通过计算输入数据的均方根(RootMeanSquare,RMS)来进行归一化,避免了传统归一化方法中均值和方差的计算1.LayerNorm(层归一化)LayerNorm(层归一化)是一种用于深度学习的归一化技术,主要用于稳定训练过程、加
- 2023年中国大学生程序设计竞赛女生专场(ccpc女生赛)
小竹子14
算法深度优先c++
A.疾羽的救赎思路:这道题的思路其实非常清晰,题意也很好懂,如果说有个关键点的话就是把每个棋子当前的位置做一下标记,我这里设置的是now数组,然后用一个deque数组当作棋盘,每一个元素上面都可以摞棋子(因为可以双端出入),这里的话,主要是考虑到进出的顺序,从尾出从头进,就可以不乱顺序。主体就是通过now找到某个棋子的位置,通过位置定位到棋盘上的某个格子找到该双端队列的元素,取出,然后放到相应的位
- Linux驱动学习--V4L2框架
文艺小少年
linux运维服务器V4L2
一、引言V4L2是Videoforlinux2的简称,为linux中关于视频设备的内核驱动。在Linux中,视频设备是设备文件,可以像访问普通文件一样对其进行读写,摄像头在/dev/video0下。V4L2在设计时,是要支持很多广泛的设备的,它们之中只有一部分在本质上是真正的视频设备。主要有以下几种几种接口视频采集接口(videocaptureinterface):这种应用的设备可以是高频头或者摄
- RabbitMQ实战(二)-消息持久化策略、事务以及Confirm消息确认方式
Java思享汇
RabbitMQ学习RabbitMQ消息持久化事务confirmack
「扫码关注我,面试、各种技术(mysql、zookeeper、微服务、redis、jvm)持续更新中~」RabbitMQ学习列表:RabbitMQ实战(一)-消息通信基本概念·在上一篇学习完RabbitMQ通信的基本概念后,我们来继续学习消息的持久化以及代码实现RabbitMQ通信。在正常生产环境运维过程中无法避免RabbitMQ服务器重启,那么,如果RabbitMQ重启之后,那些队列和交换器就会
- 卷积神经网络可视化
天行者@
cnn人工智能神经网络
卷积神经网络(CNN)的可视化是理解模型行为、调试性能和解释预测结果的重要工具。以下从技术原理、实现方法和应用场景三个维度,系统梳理CNN可视化的核心技术,并提供代码示例和前沿方向分析:一、CNN可视化的核心维度1.卷积核可视化原理:提取卷积层的权重,将其转换为图像形式,观察滤波器学习到的模式。实现步骤:提取卷积层权重(形状为[out_channels,in_channels,kernel_siz
- 【2025年35期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深A股当天分价成交占比数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言股票API股票数据接口股票数据
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- 深入解析:大型机器学习模型的基本概念与特点
AI大模型-大飞
机器学习人工智能AI大模型AI神经网络大模型
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调1.大模型的定义大模型是指具有大规模参数和复杂计算结
- 【从零开始学习计算机科学】数据库系统(十)XML、XPATH、XQuery与XML数据库
贫苦游商
数据库学习xmlxpathxml数据库xquerysql
【从零开始学习计算机科学】数据库系统(十)XML、XPATH、XQuery与XML数据库XML基础知识元素属性Namespaces文档类型定义(DTD)文档类型定义(DTD)XML数据文档的树模型XML树模型的生成方式Xpath语言Xpath常用的标记XQuery语言XML基础知识XML是一种语言,更是一种适合灵活描述各种办半结构化的数据和结构的好工具。在一应用程序与另一应用程序需通信(交换数据)
- 【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL 与 NewSQL
贫苦游商
数据库学习nosqlnewsql云数据库CAPsql
【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL与NewSQL云数据库云服务器的服务云数据库和传统的分布式数据库的异同NoSQLNoSQL数据库的特点CAP定理NoSQL的特性NoSQL数据库的分类NoSQL的适用场景Nosql数据库实例-RedisRedis的优势MongoDBMongoDB的特点NewSQLNewSQL出现的背景NewSQL(新型分布式数据库)的概念NewSQL
- 【从零开始学习计算机科学】编程语言(一)常用编程语言的发展与介绍
贫苦游商
学习javapythonc++编程语言r语言javascript
【从零开始学习计算机科学】编程语言(一)常用编程语言的发展与介绍编程语言可读性可写性可靠性代价影响编程语言的因素编程语言的分类编程语言设计中的权衡编程语言的实现方法编程环境编程语言的发展过程低级语言时代高级语言时代第一个高级语言—Fortran第一个结构化程序设计语言—ALGOL最简单的语言——BASIC编程语言里一个重要的里程碑——Pascal现代程序语言革命的起点——C语言面向对象时代Java
- 普通人如何利用GPT赚钱之开发虚拟助手
贫苦游商
普通人利用AI搞钱系列gpt人工智能深度学习机器人AIGC
普通人如何利用GPT赚钱之开发虚拟助手随着人工智能技术的迅猛发展,GPT(GenerativePre-trainedTransformer)作为一种强大的语言模型,正在改变我们的生活和工作方式。普通人如何利用GPT赚钱?开发虚拟助手是一个极具潜力的方向。本文将探讨如何开发虚拟助手,以及如何通过这一技术实现经济收益。什么是虚拟助手虚拟助手是一种基于人工智能的技术,能够理解自然语言并执行特定任务。它们
- 搞定leetcode面试经典150题之链表
醒了就刷牙
LeetCode刷题leetcode面试链表
系列博客目录文章目录系列博客目录理论知识单向链表双向链表例题206.反转链表92.反转链表II27.回文链表141.环形链表21.合并有序链表2.两数相加19.删除链表的倒数第N个结点138.随机链表的复制82.删除排序链表中的重复元素II61.旋转链表86.分隔链表理论知识链表是数据结构中一种非常常见且基础的结构,在Java中,链表被广泛应用于解决动态数据存储问题。与数组不同,链表的元素(节点)
- spring boot 基础学习 - 请求参数映射与参数j校验
破小孩儿乖
springboot学习笔记spring请求参数springbootspringmvc
springboot支持多种类型的请求参数映射1.简单数据的映射简单数据我们只需要给handler添加相应的形参,保证形参名称和页面请求参数的名称一致,spring就会回自动的帮我们将请求参数进行格式装换并封装到形参中:handler代码:@RequestMapping("paramstest")publicStringsimpleparam(Integerid,Stringusername,Bo
- 搞定leetcode面试经典150题之双指针
醒了就刷牙
LeetCode刷题leetcode面试算法java
系列博客目录文章目录系列博客目录理论知识例题125.验证回文串392.判断子序列167.两数之和Ⅱ-输入有序数组283.移动零简单非面试经典150题11.盛最多水的容器中等15.三数之和中等很多内容借鉴B站蜜糖,他讲的很好理论知识双指针虽然是直接用它的理论知识来命名,但是使用两个指针的这一点只是它的表象。双指针:由于数据特征的有序性(大小或者正负),所以可以证明当前节点一定是优于过往节点,从而可以
- 搞定leetcode面试经典150题之哈希算法
醒了就刷牙
LeetCode刷题哈希算法leetcode面试算法
系列博客目录搞定leetcode面试经典150题之哈希算法搞定leetcode面试经典150题之双指针搞定leetcode面试经典150题之滑动窗口文章目录系列博客目录理论知识1.哈希函数(HashFunction)2.哈希表(HashTable)通过HashMap实现3.哈希算法的应用4.哈希算法的时间复杂度编程理论1.HashSet的工作原理2.HashMap(哈希表)的工作原理3.哈希表中的
- 超详细Python教程——SQL详解之DDL
月流霜
pythonsql数据库
SQL详解之DDL我们通常可以将SQL分为四类,分别是DDL(数据定义语言)、DML(数据操作语言)、DCL(数据控制语言)和TCL(事务控制语言)。DDL主要用于创建、删除、修改数据库中的对象,比如创建、删除和修改二维表,核心的关键字包括create、drop和alter;DML主要负责数据的插入、删除、更新和查询,关键词包括insert、delete、update和select;DCL用于授予
- 电子电气架构 ---常见车规MCU安全启动方案
车载诊断技术
EV(电动汽车)常规知识必备车载电子与软件框架车载电子电气架构架构单片机安全人工智能AI在整车产品领域的应用
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- HTML 样式之 CSS 全面解析
烂蜻蜓
HTMLhtmlcss前端
在网页开发的世界里,HTML负责搭建页面的结构,而CSS(CascadingStyleSheets,层叠样式表)则承担着渲染HTML元素标签样式的重任,赋予网页丰富的视觉效果。一、CSS的魅力展现CSS能够实现诸如改变文字的样式与颜色(Look!Stylesandcolors)、灵活操控文本(ManipulateText)、设置元素的颜色和盒子模型(Colors,Boxes)等诸多功能,极大地提升
- 深入浅出 K 近邻算法:原理、实践与应用
烂蜻蜓
机器学习近邻算法算法
引言在机器学习的众多算法中,K近邻算法(K-NearestNeighbors,简称KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN都展现出独特的魅力。本文将深入探讨KNN算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。KNN算法的基本原理KNN算法属于监督学习范畴,其核心思想质朴而直
- 【漫话机器学习系列】137.随机搜索(Randomized Search)
IT古董
漫话机器学习系列专辑机器学习人工智能
随机搜索(RandomizedSearch)详解在机器学习和深度学习的模型训练过程中,超参数调优(HyperparameterTuning)是至关重要的一环。随机搜索(RandomizedSearch)是一种高效的超参数优化方法,它通过在候选超参数的数值分布(如正态分布、均匀分布等)中随机选择超参数组合,从而找到最优的超参数配置。1.超参数调优的必要性超参数是模型在训练之前需要人为设定的参数,例如
- 南京大学×百度“星河杯”AI大模型创意校园赛正式起航
3月9日,教育部长怀进鹏在十四届全国人大二次会议民生主题记者会上,谈到了人工智能+教育的重要性。他强调,要把人工智能技术深入到教育教学和管理的全过程和全环节,研究其有效性和适应性,让青年一代更加主动地学习,让教师更加创造性地教学。南京大学早在年初就已经敏锐地洞察到了人工智能的重要性,在新学期工作布置会上,发布了一个前瞻性决策:24年9月面向全体本科新生开设“人工智能通识核心课程体系”,南京大学党委
- 百度官方!打造「大模型全开发周期系列课程」,AI应用开发入门课率先发布!(内含英雄帖)
在这个大模型技术日新月异的时代,AI的潜力正被无限释放,改变着我们的工作和生活方式。你是否渴望成为这场变革的参与者?你是否也想在这个大模型时代中抢占先机?那“学习AI”、“使用AI”、“入局AI”我们真的可以受益吗?学习辅助:将AI使用融入学习当中,依据当前学习情况,整理重点难点,让复习有的放矢,更高效掌握知识点。效率提升:帮助处理繁琐重复的工具,如数据分析师使用AI识别数据中的关键信息,自动整理
- Spring Boot整合参数校验的技术学习
小码快撩
springboot学习java
引言在软件开发中,数据校验是一个非常重要的环节,它确保了数据的完整性和安全性。SpringBoot作为一款流行的Java框架,提供了非常方便的参数校验功能。本文将详细介绍如何在SpringBoot中整合参数校验,并通过示例代码演示其使用方法。一、依赖管理在SpringBoot中整合参数校验的依赖管理相对简单,因为SpringBoot默认集成了HibernateValidator作为其参数校验的支持
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- PC版微信占满硬盘?这款清理神器一键搞定!
zyw05120113
个人开发智能手机djangoocrpdf
嘿,朋友们!微信现在几乎是咱们生活中离不开的聊天工具了,不管是手机还是电脑,基本都得装上它。但是,用的时间长了,PC版微信就会占用越来越多的硬盘空间。要是不清理,不仅电脑会变慢,隐私也可能不安全。今天,我就给大家分享一款我超喜欢的微信清理小工具——CleanWeChatX。CleanWeChatX这款工具是吾爱大神开发的,特别专业。它不用安装,下载后直接双击就能用。别看它只有4.05MB,功能可一
- Kafka、RocketMQ、RabbitMQ三款消息中间件的原理
家常凉菜
kafkarocketmqrabbitmq
最近学习了Kafka、RocketMQ、RabbitMQ三款消息中间件的原理,本文主要是记录一下Kafka、RabbitMQ、RocketMQ三款中间件之间的区别。下面先对各自的架构进行简单的介绍,然后详细对比一下他们之间的关键不同点。由于学习时间和个人水平有限,文中错误之处在所难免,敬请指正。一、Kafka简介Producer:生产者,向Kafka集群(Broker)中发送消息Consumer:
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- 进销存软件怎么选?9款平价好用的系统供你选择!
数据库
——市场上的进销存软件一大堆,选来选去又找不到适合自己的,选个软件怎么这么麻烦!别急,我特地花时间找了国内外的9款进销存系统,把功能、特点、适用企业、使用场景都整理好了,直接对比,一目了然,省得大家踩坑!无论你是个体户、小微企业,还是做批发、制造、电商,这里都有合适的选择,快来看看哪款最适合你。根据个人经验,已整理好了进销存系统模板,自取>>https://s.fanruan.com/s5fpp1
- 8款热门CRM系统盘点!优缺点分析,帮你选对适合的!
数据库
现在做生意,客户就是金饭碗,谁能把客户维护好,谁就能在市场上占一席之地。可是,客户多了,信息杂了,跟进不到位、管理混乱、流失率高……这些问题有没有让你头大?所以,一款好用的CRM(客户管理系统)真的太重要了!我整理了8款2025年热门CRM系统,适合不同企业类型,优缺点也都给你分析好了,看看哪款最适合你。小编已经给大家整理好了CRM系统模板,自取>>https://s.fanruan.com/u6
- 渗透学习笔记(四)window基础2
nnnimok
学习笔记
声明!学习视频来自B站up主**泷羽sec**有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关,切勿触碰法律底线,否则后果自负!!!!有兴趣的小伙伴可以点击下面连接进入b站主页[B站泷羽sec](https://space.bilibili.com/350329294)五、Windows网
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>