- 详解多模态(红外-可见光图像)目标检测模型SuperYOLO源码,真正搞清代码逻辑!
弗兰随风小欢
目标检测实验系列深度学习目标检测YOLO计算机视觉多模态目标检测视觉检测人工智能
目录1.文章主要内容2.相关说明3.基于SuperYOLO的多模态目标检测3.1详解代码流程(重点)3.1.1train.py文件(入口)3.1.2SRyolo.py文件3.1.3datasets.py文件3.1.4再次回到train.py文件3.1.5再次回到SRyolo.py文件3.总结1.文章主要内容本文主要是详细分析SuperYOLO多模态源代码,包括如何启动,以及详细代码部分如何改进,从
- python根目录的生成
影月L
python
python根目录的生成importosfromosimportgetcwdwd=getcwd()#os.getcwd()方法能够返回当前工作目录datasets_path="data/"#里面有个文件夹data,图片就存于次文件夹中photos_names=os.listdir(datasets_path)#返回指定的文件夹包含的文件或文件夹的名字的列表photos_names=sorted(p
- 使用一个大语言模型对另一个大语言模型进行“调教”
大霸王龙
python人工智能python
使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:1.准备工作安装必要的库•Transformers:用于加载和训练模型。•Datasets:用于处理数据集。•PEFT:用于微调,特别是LoRA(Low-RankAdaptation)等技术。•Accelerate:用
- [未解决]tensorflow_datasets.core.download.download_manager.NonMatchingChecksumError:
爱生活爱自己爱学习
python硕士pythontensorflow
Extractioncompleted...:0file[1:53:39,?file/s]Traceback(mostrecentcalllast):File"E:/github/tf_models/tutorials/image/cifar10/cifar10_train.py",line126,intf.app.run()File"E:\software\Anaconda3\lib\site-
- What‘s the best way to handle large datasets in Matplotlib?
若木胡
matplotlib
TheuserisaskingaboutthebestwaytohandlelargedatasetsinMatplotlib.Ineedtoprovidepracticalandeffectivestrategiesthatcanhelpoptimizebothperformanceandreadabilitywhenworkingwithlargedatasets.I’llstartbybre
- Silero VAD 教程
褚艳影Gloria
SileroVAD教程silero-vadSileroVAD:pre-trainedenterprise-gradeVoiceActivityDetector项目地址:https://gitcode.com/gh_mirrors/si/silero-vad1.项目目录结构及介绍该开源项目silero-vad的目录结构如下:.├──datasets#包含示例数据集└──examples#存放示例代码
- YOLO 安装 并且命令行指定配置文件
ELI_He999
python人工智能YOLO人工智能深度学习
pipinstallultralyticssettings.yaml保存到当前目录,data参数yolo命令行指定配置文件{"settings_version":"0.0.6","datasets_dir":"xxxx\\datasets","weights_dir":"xxxx\\weights","runs_dir":"xxxx\\runs","uuid":"xxxx","sync":true
- 机器学习-分类算法评估标准
赛丽曼
机器学习机器学习分类人工智能
一.准确率accuracy将预测结果和测试集的目标值比较,计算预测正确的百分比准确率越高说明模型效果越好fromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_splitfromsklearn.neighborsimportKNeighborsClassifier#加载鸢尾花数据X,y=datasets.load_i
- python datasets_python基础之sklearn.datasets
weixin_39897887
pythondatasets
sklearn.datasets模块主要提供了一些导入、在线下载及本地生成数据集的方法,可以通过dir或help命令查看,我们会发现主要有三种形式:load_、fetch_及make_的方法(1)datasets.load_:sklearn包自带的小数据集In[2]:datasets.load_*?datasets.load_boston#波士顿房价数据集datasets.load_breast_
- sklearn.datasets
SilenceHell
机器学习实战学习笔记
fromsklearn.datasets.california_housingimportfetch_california_housinghousing=fetch_california_housing()type(housing)Out[21]:sklearn.utils.Bunchtype(housing.data)Out[23]:numpy.ndarrayhousing.data[0]Out
- 第01章 14 VTK数据集(DataSet)的类型
捕鲸叉
VTK编程学习VTK
在VTK(VisualizationToolkit)中,数据类型(DataTypes)主要用于表示不同类型的数据集(DataSets),这些数据集可以是几何和拓扑信息的组合,用于描述三维空间中的对象。每种数据类型都有其独特的特点和应用场合。以下是VTK中常用的数据类型及其特点和应用:1.vtkPolyData特点:vtkPolyData是一种简单的数据类型,用于表示多边形数据。它由点(Points
- 基于深度学习的推荐系统构建:Movielens 数据集
fresh的转码之路
深度学习人工智能机器学习推荐算法
基于深度学习的推荐系统构建:Movielens数据集依赖环境代码语言:python3.11.5开发平台:pycharmtensorflow版本:2.18.0MovieLen1M数据及简介MovieLens1M数据集包含包含6000个用户在近4000部电影上的100万条评分,也包括电影元数据信息和用户属性信息。下载地址为:http://files.grouplens.org/datasets/mov
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- python下报错AttributeError: 'NoneType' object has no attribute 'shape'
无止境x
路径问题:config.TRAIN.hr_img_path=r'D:\SR_datasets\DIV2K\DIV2K_train_HR/'#最后还要加一个/斜杠
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 深度学习目标检测入门COCO数据集
日暮途远z
深度学习目标检测人工智能
常见数据集类型:COCO数据集:Pytorch加载COCO数据集:COCO数据集的读取COCO_dataset=torchvision.datasets.CocoDetection(root="./dataset/val2017",annFile="./instances_val2017/instances_val2017.json")root(strorpathlib.Path)–Rootdir
- 【Python报错】已解决ModuleNotFoundError: No module named datasets
云天徽上
python运行报错解决记录numpy数据库pandas机器学习
成功解决“ModuleNotFoundError:Nomodulenameddatasets”错误的全面指南在Python编程中,遇到ModuleNotFoundError:Nomodulenameddatasets这样的错误通常意味着Python解释器无法找到名为datasets的模块。datasets是一个流行的Python库,常用于加载和处理大型数据集,特别是在自然语言处理(NLP)和机器学
- COCO8 dataset 每种代表什么
西柚与蓝莓
pytorchopencv
#UltralyticsYOLO,AGPL-3.0license#COCO8dataset(first8imagesfromCOCOtrain2017)byUltralytics#Documentation:https://docs.ultralytics.com/datasets/detect/coco8/#Exampleusage:yolotraindata=coco8.yaml#parent
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- pyskl/datasets/pipelines/heatmap_related.py
鱼儿会飞吗
pythonnumpy开发语言
classGeneratePoseTarget:首先看def__call__(self,results):def__call__(self,results):heatmap=self.gen_an_aug(results)key='heatmap_imgs'if'imgs'inresultselse'imgs'ifself.double:indices=np.arange(heatmap.shap
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- 深度学习五种不同代码实现,神经网络,机器学习
学呗~那不然呢
pycharm
第一种importnumpyasnpimporttensorflowastfmnist=tf.keras.datasets.mnistimportmatplotlib.pyplotaspltimportmatplotlibmatplotlib.use("TkAgg")(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train=x_train
- Python_pytorch(五)模型训练
Han Gang
pythonpytorch深度学习
反向传播LossFunctionimporttorchvisionfromtorchimportnnfromtorch.nnimportFlattenfromtorch.utils.dataimportDataLoaderdataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transform
- C# OpenVino Yolov8 Pose 姿态识别
乱蜂朝王
人工智能c#openvinoYOLO
目录效果模型信息项目代码下载效果模型信息ModelProperties-------------------------date:2023-09-07T17:11:43.091306description:UltralyticsYOLOv8n-posemodeltrainedon/usr/src/app/ultralytics/datasets/coco-pose.yamlauthor:Ultra
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 运行《tensorflow21天》的warning
guxue365
AI
在运行第一章的时候所出现得提示信息wt@wt-desktop:~/software/AI/chapter_1$pythondownload.pyWARNING:tensorflow:Fromdownload.py:5:read_data_sets(fromtensorflow.contrib.learn.python.learn.datasets.mnist)isdeprecatedandwill
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- PyTorch – 逻辑回归
一个高效工作的家伙
pythonpytorch逻辑回归人工智能
data首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D