hdu 5015 233 Matrix (矩阵快速幂)

解析:

很显然矩阵的第一列为:
0
a[1]
a[2]
a[3]
a[4]
我们转化一下,转化为
23
a[1]
a[2]
a[3]
a[4]
3
那么由第一列转移到第二列则为
23*10+3
a[1]+23*10+3
a[2]+a[1]+23*10+3
a[3]+a[2]+a[1]+23*10+3
a[4]+a[3]+a[2]+a[1]+23*10+3
3
根据以上推导可以得出变换矩阵:
hdu 5015 233 Matrix (矩阵快速幂)_第1张图片

AC代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef __int64 ll;
const int INF = 0x3f3f3f3f;
const int MOD = 10000007;
const int SIZE = 12;
int size;

struct Matrix {
    ll v[SIZE][SIZE];
    Matrix() {
        memset(v, 0, sizeof(v));
    }
};
Matrix operator * (Matrix a, Matrix b) {
    Matrix c;
    for(int i = 0; i < size; i++) {
        for(int j = 0; j < size; j++) {
            c.v[i][j] = 0;
            for(int k = 0; k < size; k++) {
                c.v[i][j] += (a.v[i][k]*b.v[k][j]) % MOD;
                c.v[i][j] %= MOD;
            }
        }
    }
    return c;
}
Matrix operator ^ (Matrix a, ll k) {
    Matrix c;
    for(int i = 0; i < size; i++) {
        c.v[i][i] = 1;
    }
    while(k) {
        if(k & 1)
            c = a * c;
        a = a * a;
        k >>= 1;
    }
    return c;
}
int n, m;
int main() {
    while(scanf("%d%d", &n, &m) != EOF) {
        Matrix ret, A, F;

        A.v[0][0] = 23;
        int tmp;
        for(int i = 1; i <= n; i++) {
            scanf("%d", &tmp);
            A.v[i][0] = tmp;
        }
        A.v[n+1][0] = 3;
        size = n + 2;

        for(int i = 0; i < size-1; i++)
            F.v[i][0] = 10;
        for(int i = 1; i < size-1; i++)
            for(int j = 1; j <= i; j++)
                F.v[i][j] = 1; 
        for(int i = 0; i < size; i++)
            F.v[i][size-1] = 1;

        ret = (F^(m)) * A;
        printf("%I64d\n", ret.v[n][0]);
    }
    return 0;
}

你可能感兴趣的:(HDU,5015)