Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 34513 | Accepted: 12602 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N,M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps toF (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
题意:John的农场里有n块地和m条路双向路以及w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退T秒。我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前的自己。
说下输入:n块地,m条边,w个虫洞。下面依次是m条边的信息(双向),输入完后是w个虫洞的信息(单向)。
思路:spfa。由于存在负权边,Dijkstra便不能用了。简化题目->就是看图中有没有负权环,有的话John可以无限次走这个环,使得时间一定能得到一个负值。所以存在负环话就是可以,没有的话就是不可以了。
spfa邻接表:157ms
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> #define MAXN 500+100 #define MAXM 5000+700 #define INF 0x3f3f3f using namespace std; struct Edge { int to, val, next; }edge[MAXM]; int dist[MAXN], vis[MAXM], used[MAXM], head[MAXM], top; queue<int> Q; int n, m, w; void addedge(int a, int b, int d) { edge[top].to = b; edge[top].val = d; edge[top].next = head[a]; head[a] = top++; } void init() { top = 0; for(int i = 1; i <= n; i++) { used[i] = 0; vis[i] = 0; head[i] = -1; } } void spfa() { int i; for(i = 1; i <= n; i++) dist[i] = INF; while(!Q.empty()) { Q.pop(); } Q.push(1); dist[1] = 0; used[1]++; vis[1] = 1; while(!Q.empty()) { int u = Q.front(); Q.pop(); vis[u] = 0;//清除标记 for(i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if(dist[v] > dist[u] + edge[i].val) { dist[v] = dist[u] + edge[i].val; if(!vis[v]) { vis[v] = 1; used[v]++; if(used[v] > n)//存在负环 { printf("YES\n"); return ; } Q.push(v); } } } } printf("NO\n"); } int main() { int t; int a, b, d; scanf("%d", &t); while(t--) { scanf("%d%d%d", &n, &m, &w); init(); while(m--) { scanf("%d%d%d", &a, &b, &d); addedge(a, b, d); addedge(b, a, d); } while(w--) { scanf("%d%d%d", &a, &b, &d); addedge(a, b, -d);//建立负权边 } spfa(); } return 0; }