于朴素贝叶斯分类器的文本分类算法(下)

文本分类算法的流程是:

输入一篇文章,可以返回告诉用户这篇文章的分类,是IT,是娱乐,还是其他性质的?

首先在Sogou的lab中获得一些trainning的数据,这些trainning的结构是在一个大目录下有很多的小目录:

 汽车
 财经
 IT
 健康
 体育
 旅游
 教育
 招聘
 文化
 军事

在这些目录下有很多属于该类的文章,用于trainning用。

源代码下载:NaviveBayesClassify.rar 

Preface

文本的分类和聚类是一个比较有意思的话题,我以前也写过一篇blog基于K-Means的文本聚类算法》,加上最近读了几本数据挖掘和机器学习的书籍,因此很想写点东西来记录下学习的所得。

在本文的上半部分《基于朴素贝叶斯分类器的文本分类算法(上)》一文中简单介绍了贝叶斯学习的基本理论,这一篇将展示如何将该理论运用到中文文本分类中来,具体的文本分类原理就不再介绍了,在上半部分有,也可以参见代码的注释。

文本特征向量

文本特征向量可以描述为文本中的字/词构成的属性。例如给出文本:

Good good study,Day day up.

可以获得该文本的特征向量集:{ Good, good, study, Day, day , up.}

朴素贝叶斯模型是文本分类模型中的一种简单但性能优越的的分类模型。为了简化计算过程,假定各待分类文本特征变量是相互独立的,即朴素贝叶斯模型的假设。相互独立表明了所有特征变量之间的表述是没有关联的。如上例中,[good][study]这两个特征变量就是没有任何关联的。

在上例中,文本是英文,但由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词

中文分词

      这里采用极易中文分词组件,这个中文分词组件可以免费使用,提供Lucene接口,跨平台,性能可靠。

你可能感兴趣的:(于朴素贝叶斯分类器的文本分类算法(下))