poj 2985(并查集+线段树求K大数)

解题思路:这道题并查集很容易,合并时找到父节点就直接加上去就ok了。关键是如何求K大数,我一直在想用线段树怎么写,一开始想如果直接记录数的大小那肯定是没戏了,借鉴了一下别人的思路:区间[a,b]记录的是所有的数里面,等于a,a+1,a+2,......,b-1,b的个数。看到这里就应该明白了,这里线段树的用法是把它看做是一个1-n的数轴。到时候要修改某一个数,就直接在数轴上修改它。至于记录[a,b]的个数,是为了找到K大数。


参考博客:http://blog.sina.com.cn/s/blog_6fd8e0fe0100v89n.html



#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 200005;
struct Segment
{
	int l,r;
	int sum;
}tree[maxn<<2];
int n,m,fa[maxn],tot[maxn];

int find(int x)
{
	if(fa[x] == x) return x;
	return fa[x] = find(fa[x]);
}

void build(int rt,int l,int r)
{
	tree[rt].l = l, tree[rt].r = r;
	if(tree[rt].l == 1) tree[rt].sum = n;
	else tree[rt].sum = 0;
	if(l == r) return;
	int mid = (l + r) >> 1;
	build(rt<<1,l,mid);
	build(rt<<1|1,mid+1,r);
}

void update(int rt,int pos,int val)
{
	tree[rt].sum += val;
	if(tree[rt].l == tree[rt].r) return;
	int mid = (tree[rt].l + tree[rt].r) >> 1;
	if(pos <= mid) update(rt<<1,pos,val);
	else update(rt<<1|1,pos,val);
}

int query(int rt,int k)
{
	if(tree[rt].l == tree[rt].r) return tree[rt].l;
	int mid = (tree[rt].l + tree[rt].r) >> 1;
	if(tree[rt<<1|1].sum >= k) return query(rt<<1|1,k);
	else return query(rt<<1,k - tree[rt<<1|1].sum);
}

int main()
{
	int op,a,b,x,y;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		for(int i = 1; i <= n; i++)
			fa[i] = i, tot[i] = 1;
		build(1,1,n);
		for(int i = 1; i <= m; i++)
		{
			scanf("%d",&op);
			if(op)
			{
				scanf("%d",&a);
				printf("%d\n",query(1,a));
			}
			else
			{
				scanf("%d%d",&a,&b);
				x = find(a);
				y = find(b);
				if(x == y) continue;
				fa[y] = x;
				update(1,tot[x],-1);
				update(1,tot[y],-1);
				update(1,tot[x]+tot[y],1);
				tot[x] += tot[y];
				tot[y] = 0;
			}
		}
	}
	return 0;
}


你可能感兴趣的:(LCA)