- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 分布式事务3PC解决了2PC哪些问题?
java干货仓库
八股文汇总分布式事务分布式java面试
三阶段提交(3PC,Three-PhaseCommit)是对二阶段提交(2PC,Two-PhaseCommit)的改进,旨在解决2PC的一些固有缺陷,特别是在分布式系统中的容错性和性能问题。以下是3PC比2PC更好的原因及其优势的详细分析:1.二阶段提交(2PC)的问题2PC是一种经典的分布式事务协议,分为两个阶段:准备阶段(PreparePhase):协调者向所有参与者发送准备请求。参与者执行事
- YashanDB日志收集
数据库
日志收集命令主要是一键收集节点的日志,把远端服务器上的节点的日志统一打包发送到本地服务器。日志收集命令仅适用于通过yasboot安装的数据库,否则需要先对该数据库进行托管。示例./bin/yasbootclusterlog-cyashandbstart:2023-07-2800:00:00end:2023-07-2820:11:19type|uuid|name|hostid|index|statu
- lvs
wzyzzu
linux
目录LVS项目理论项目介绍体系结构IP负载均衡负载调度安装配置简介组件背景硬件/网络的要求路由的必要条件节点内部连接的必要条件安装软件配置例子简单实例LVSLVS是章文嵩博士发起和领导的优秀的集群解决方案,许多商业的集群产品,比如RedHat的Piranha,TurboLinux公司的TurboCluster等,都是基于LVS的核心代码的。在现实的应用中,LVS得到了大量的部署,请参考http:/
- Docker镜像瘦身终极指南:七种武器让你的镜像体积减少90%!
DevKevin
日常笔记docker容器运维
文章目录引言为什么要关注Docker镜像瘦身?(强调重要性)七种Docker镜像瘦身武器(核心内容,分点详细讲解)--------第二阶段:运行阶段--------引言你是否也曾被Docker镜像那臃肿的身材所困扰?动辄几百兆甚至上G的镜像,不仅霸占着宝贵的硬盘空间,更拖累了镜像拉取和容器启动的速度,严重影响了开发和部署效率,简直让人“闻Image色变”!别担心!今天,我就将为你揭秘Docker镜
- 网站老是被上传木马后门,怎么办?推荐两步解决法
hwscom
服务器安全技术服务器安全运维
站长朋友们,基本上都遭遇过网页木马和网站后门吧!其中最出名的当属“一句话木马”,因为非常简短,真的只有一句话(如下图),并且一般都嵌入到网站正常代码内,让人难以察觉。(图一:一句话木马)黑客入侵服务器往往都会先入侵网站,植入木马后门,再通过该木马后门进一步窃取服务器权限。黑客植入木马后门主要有以下几种途径:在线上传漏洞、FTP信息泄露、跨站入侵。其中在线上传漏洞是最常用的途径,占比高达90%以上。
- 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
电力程序小学童
聚类matlabISODATA算法风电光伏
目录1主要内容聚类中心选取步骤核方法2部分代码3程序结果4程序链接1主要内容程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- PostgreSQL vs MySQL——哪种关系数据库更好?
全能资料库
postgresqlmysql数据库
PostgreSQL和MySQL是世界上最流行的两种关系数据库管理系统(RDMS)。包括商业企业和开源基金会在内的所有市场人口都在使用它们。它们的共同点是强大的网络容错能力和对数据聚类的支持。这篇文章的主题是将它们区分开来。RDMS起源和历史1973年,加州大学伯克利分校启动了一个名为“Ingres”的项目,为关系数据库管理系统制定新标准。该项目是用C编写的,并根据开源许可证向公众发布。根据[Wi
- 数据挖掘导论——第七章:聚类
Wis4e
数据挖掘聚类人工智能
什么是聚类?数据间的相似性和距离的测量方式有哪些?数据标准化如何进行距离计算?层次聚类的思想和流程?K-均值聚类的思想和流程?距离的计算方式如何影响聚类结果?聚类的要素,包括数据,差异性/相似性测量方式,聚类算法(标准化执行程序或流程)理解相似性和差异性的度量(p40)。Jaccard和余弦相似性度量。以下内容由AI生成:余弦相似度(CosineSimilarity)是一种衡量两个向量在方向上相似
- Docker Compose to Kubernetes 转换工具教程
裴辰垚Simone
DockerComposetoKubernetes转换工具教程docker-compose-kubernetesLaunchalocalKubernetesclusterviaDockerCompose项目地址:https://gitcode.com/gh_mirrors/do/docker-compose-kubernetes项目介绍本项目旨在提供一个简单的方法,将使用DockerCompose
- Linux企业实战-----LVS+keepalived负载均衡集群
Yang5208
linux负载均衡运维
用LVS实现负载均衡实现步骤:#若在虚拟环境中需执行此步骤创建两个新的虚拟机,VMWARE可忽略此步骤真实主机:cd/var/lib/libvirt/images/lsqemu-imgcreate-fqcow2-brhel7.6.qcow2server3qemu-imgcreate-fqcow2-brhel7.6.qcow2server4server1:pcsclusterdisable--all
- 实战篇:GBase 8a MPP Cluster 安装部署过程
Lucifer三思而后行
DBA实战系列数据库gbasecluster
目录前言☀️环境准备安装介质下载操作系统安装安装前准备1、关闭防火墙2、禁用Selinux3、创建gbase用户4、创建目录并授权5、重启主机❤️GBase8aMPPCluster安装主节点上传安装介质主节点解压安装包分发配置文件配置环境变量修改主节点安装配置文件主节点执行安装命令检查集群状态申请和导入授权①导出集群各节点的指纹信息②邮件申请授权③主节点导入授权④检查授权情况所有节点启动集群服务主
- 【sklearn 05】sklearn功能模块
@金色海岸
sklearn人工智能python
sklearn功能模块分类:识别某个对象属于那个类别回归:预测与对象相关联的连续值属性聚类:将相似对象自动分组降维:减少要考虑的随机变量的数量模型选择:比较、验证、选择参数和模型预处理:特征提取和归一化
- 深入浅出分布式事务原理
梵高的猪v
分布式事务
一、Seata四大事务模式详解模式实现机制事务一致性业务侵入性适用场景AT数据库本地事务+Undo日志+二阶段提交最终一致性无侵入电商、订单等高性能要求TCCTry-Confirm-Cancel强一致性强业务侵入金融支付、账户、转账等SAGA补偿事务(前进+回滚)最终一致性轻微侵入长事务,如营销活动XA标准XA协议强一致性无侵入银行、转账等二、逐个详细拆解每一种事务模式1.AT模式(Automat
- JavaWeb学习——登录校验
灰太狼想上班
JavaWeb基础学习springtomcatservlet后端
JavaWeb学习——登录校验一、功能实现只需要接受请求参数username和password,然后调用接口在数据库表中查询键值匹配的数据项即可二、登录校验登录校验通常分为两步,一是登录标记,二是统一拦截1、会话跟踪会话:用户打开浏览器,访问web服务器的资源,会话建立,知道有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应会话跟踪:一种维护浏览器的方法,服务器要识别多次请求是否来自于同
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- 安卓-关于使用startForegroundService启动服务于服务提前终止的思考
Auspemak-Derafru
android
在安卓官方说明中对前台服务的说明是这样的:从应用启动前台服务分为两步。首先,您必须通过调用context.startForegroundService()来启动服务。然后,让该服务调用ServiceCompat.startForeground()将自身提升为前台服务。启动前台服务|Backgroundwork|AndroidDevelopers其中,说明到了要调用ServiceCompat.sta
- 使用二进制位运算,代替十进制乘法(除法)运算
真相很简单
编程环境嵌入式其他乘法运算位运算二进制10进制高效
文章目录乘法原理十进制分解程序示例运算结果除法原理十进制分解程序示例运算结果 在嵌入式环境中虽然有乘法运算器,而且芯片运算速度越来越快,但位运算还是最快速的,为了提高计算效率,可以将乘法运算使用位运算替换。乘法原理 若被乘数是2的整数倍,可以直接进行左移运算,这个比较简单,本文解释下当被乘数不是2的整数倍的情况,乘法进行位运算替换的基本原理,分两步因式分解:A∗(B+C)=A∗B+A∗CA*(
- 双指针算法
六七_Shmily
数据结构与算法分析算法
双指针算法是一种通过使用两个指针(索引或引用)在数据结构中有序移动来高效解决问题的技巧。它常用于数组、链表等线性结构的问题,能显著优化时间和空间复杂度。以下是其核心应用场景及使用方法:核心应用场景有序数组的两数之和左右指针从两端向中间移动,根据当前和调整指针位置。合并有序数组/链表从后向前填充避免覆盖,或直接比较节点合并。快慢指针检测链表环快指针每次走两步,慢指针走一步,相遇则有环。滑动窗口(子数
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- MATAB学习笔记2
好大一口果汁
MATLAB学习笔记算法
1.多项式拟合>>p=polyfit(DateNum,Pclose,1);%多项式拟合>>value=p(1)%将斜率赋值给value,作为股票的价值value=0.1212代码分析:%后面的内容是注释,ployfit()有三个参数,第三个参数表示多项式的阶数,也就是最高次数。比如:第三个参数为1,说明为1次项,即一次函数,第三个参数为你要拟合的阶数,一阶直线拟合,二阶抛物线拟合,并非阶次越高越好
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- Rabbitmq踩坑---删掉.erlang.cookie后重新启动服务报错
原子一式
Rabbitmq
集群部署的时候,自己笔记本安装3台centos7服务器【102,103,104】,各种前期准备好后,执行rabbitmqctlcluster_status发现报错,第一个想到的是cookie可能不对,检查发现三台.erlang.cookie都是一样的,仔细一看是103我改过hostname,重启后,从102拷贝过来发现还是报错,我就直接删掉了.erlang.cookie,然后又从102拷贝过来,启
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- python手写kmeans算法
菜鸟懿
机器学习聚类算法python
kmean聚类是最基础和常见的算法,工程上使用比较常见,spark,sklearn都有实现,本文手写实现kmeans#!/usr/bin/pythonimportsysimportrandomimportmathdefcreate_rand_points(max_x,max_y,count):"""Createcountpoints(0-x),(0-y)."""points=[]foriinran
- 忘记rar、zip压缩包密码?教你简单方法快速解锁!
jiemidashi
经验分享
找回压缩包密码从未如此简单。您只需两步,便可以轻松解密RAR或ZIP文件。具体步骤如下:第一步,打开网页浏览器,在地址栏输入:文件密码.top进入网站。这个网站无需下载软件,操作非常简单,支持各种类型的文件,包括RAR/ZIP压缩包、Word文档、Excel表格、PDF文档、WPS表格文档和PPT演示文稿。第二步,点击“立即开始”,上传您的压缩文件。耐心等待片刻,网站会处理您的请求,快速为您找回密
- SQL Server数据库基于SQL性能优化
王小工
数据库数据库sql性能优化
以下是SQLServer数据库SQL性能优化的实战策略,综合高频优化场景与核心技巧:一、索引优化1.合理创建索引对WHERE、JOIN、ORDERBY常用字段创建索引,优先选择选择性高的列(如唯一性高的字段)。使用聚集索引(ClusteredIndex)优化范围查询和排序操作,非聚集索引(Non-clusteredIndex)用于单列或组合列查询。避免在频繁更新的列上创建过多索引,以平衡读
- 解读Layout Method of Met Mast Based on Macro Zoning and Micro Quantitative Siting in a Wind Farm
赵孝正
风资源与微观选址paper
目录1.风电场气象塔布局方法流程图(简略)内容细化2.风电场气象塔布局方法详细流程图(详细)核心算法和公式详解2.2解读流程(深入浅出)第一阶段:把大风电场分成几个小区域1.看看风在哪里吹得不一样️2.看看风机的位置分布️3.测量风机之间有多"像"4.用智能方法分区第二阶段:在每个区域内找到最好的位置放测量杆5.画格子找可能的位置6.用电脑模拟风的吹动7.筛选出好位置8.找出最最好的位置9.检验我
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =