POJ 1459 Power Network DINIC

G - Power Network
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p  max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l  max(u,v) of power delivered by u to v. Let Con=Σ  uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p  max(u)=y. The label x/y of consumer u shows that c(u)=x and c  max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l  max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l  max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p  max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c  max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

题目的意思是: 有n个发电站,np个消费点,nc个转站点,m条线缆。问你输出的最大电量。

输入说明:

 前面四个分别表示:发电站的个数,消费点的个数,转站点个数,和线缆数。接下来前m是线缆连接的点数(1,0)代表线缆的两个连接点,再就是n个消费的位置(i)和需求。

最后就是转站点的位置(i)和最大流通量。

把发电站看成源点,消费点看成汇点。

ACcode:

#pragma warning(disable:4786)//使命名长度不受限制
#pragma comment(linker, "/STACK:102400000,102400000")//手工开栈
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define rds(x) scanf("%s",x)
#define rdc(x) scanf("%c",&x)
#define ll long long int
#define maxn 100005
#define mod 1000000007
#define INF 0x3f3f3f3f //int 最大值
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
using namespace std;
struct  Edge{
    int to,next;
    int w;
}e[maxn];
int head[maxn],level[maxn];
int tot,n;
void addEdge(int u,int v,int w){
    e[tot].to=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
    e[tot].to=u;e[tot].w=0;e[tot].next=head[v];head[v]=tot++;
}
bool makelevel(int s,int t){
    int w;
    MT(level,-1);
    int que[maxn];
    int front=0,rear=0;
    que[rear++]=s;
    level[s]=0;
    while(front!=rear){
        int u=que[front++];
        for(int k=head[u];k!=-1;k=e[k].next){
            int v=e[k].to;
            if(e[k].w>0&&level[v]==-1){
                level[v]=level[u]+1;
                que[rear++]=v;
                if(v==t)return true;
            }
        }
    }
    return false;
}
int dfs(int now,int maxf,int t){
    if(now==t)return maxf;
    int  a=0;
    for(int k=head[now];k!=-1;k=e[k].next){
        int v=e[k].to;
        int w=e[k].w;
        if(w>0&&level[v]==level[now]+1&&(a=dfs(v,min(maxf,w),t))){
            e[k].w-=a;
            e[k^1].w+=a;
            return a;
        }
    }
    level[now]=-1;
    return 0;
}
int dinic(int s,int t){
    int ans=0,a;
    while(makelevel(s,t)){
        while(a=dfs(s,INF,t))ans+=a;
    }
    return ans;
}
int main(){
    int u,v,w,n,np,nc,m;
    while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF){
        tot=0;
        MT(head,-1);
        FOR(i,1,m){
            scanf(" (%d,%d)%d",&u,&v,&w);
            addEdge(++u,++v,w);
        }
        FOR(i,1,np){
            scanf(" (%d)%d",&u,&w);
            addEdge(0,++u,w);
        }
        FOR(i,1,nc){
            scanf(" (%d)%d",&u,&w);
            addEdge(++u,n+1,w);
        }
        printf("%d\n",dinic(0,n+1));
    }
    return 0;
}
/*
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4
0 0 0 0
1 1 0 0 (0)1
1 0 1 0 (0)1
2 1 1 0 (0)1 (1)1

5 1 1 5
(0,1)20 (1,2)30 (2,3)30 (3,4)10 (3,1)30
(0)100 (4)100

5 1 1 7
(0,1)14 (0,2)12
(1,3)8
(2,1)5 (2,4)16
(3,2)7 (3,4)10
(0)100 (4)100

6 1 1 10
(0,1)16 (0,2)13
(1,2)10 (1,3)12
(2,1)4 (2,4)14
(3,2)9 (3,5)20
(4,3)7 (4,5)4
(0)100 (5)100

11 1 1 21
(0,1)30 (0,2)5 (0,3)20 (0,5)5 (0,10)100
(1,4)10 (1,8)10
(2,5)10
(3,2)5 (3,6)20
(4,7)20
(5,5)60 (5,6)40 (5,10)20
(6,9)40
(8,2)15 (8,4)10 (8,5)10 (8,7)5
(9,8)30 (9,10)10
(0)1000 (10)1000

11 1 3 22
(0,1)30 (0,2)5 (0,3)20 (0,5)5 (0,10)100
(1,4)10 (1,8)10
(2,5)10
(3,2)5 (3,6)20
(4,7)20
(5,5)60 (5,6)40 (5,10)20
(6,9)40
(7,0)20
(8,2)15 (8,4)10 (8,5)10 (8,7)5
(9,8)30 (9,10)10
(0)1000 (5)1000 (7)1000 (10)1000
*/


你可能感兴趣的:(C++,poj,图论)