Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● a
i ∈ [0,n]
● a
i ≠ a
j( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a
0 ⊕ b
0) + (a
1 ⊕ b
1) +···+ (a
n ⊕ b
n)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 10
5), The second line contains a
0,a
1,a
2,...,a
n.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b
0,b
1,b
2,...,b
n. There is exactly one space between b
i and b
i+1
(0 ≤ i ≤ n - 1). Don’t ouput any spaces after b
n.
Sample Input
Sample Output
20
1 0 2 3 4
尽量错开对应位置的0,1即可,就是说将对应位的二进制按位取反了,当然不能用~符号
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
using namespace std;
#define ll __int64
#define up(i,x,y) for(i=x;i<=y;i++)
#define up2(i,x,y) for(i=x;y;i++)
#define down(i,x,y) for(i=x;i>=y;i--)
#define down2(i,x,y) for(i=x;y;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define s(a) scanf("%d",&a)
#define s64(a) scanf("%I64d",&a)
#define w(a) while(a)
int n,a[100005],i,hash[100005];
int main()
{
w(~s(n))
{
up(i,0,n)
s(a[i]);
printf("%I64d\n",(ll)n*n+n);
mem(hash,-1);
down(i,n,0)
{
if(hash[i]>=0) continue;
int num=0,s=1,t=i;
w(t)
{
int tem=((t&1)^1);
num=num+s*tem;
s*=2;
t=t/2;
}
hash[num]=i;
hash[i]=num;
}
printf("%d",hash[a[0]]);
up(i,1,n)
printf(" %d",hash[a[i]]);
printf("\n");
}
return 0;
}