POJ 3468 A Simple Problem with Integers

Description

给出了一个序列,你需要处理如下两种询问。

"C a b c"表示给[a, b]区间中的值全部增加c (-10000 ≤ c ≤ 10000)。

"Q a b" 询问[a, b]区间中所有值的和。

Input

第一行包含两个整数N, Q。1 ≤ N,Q ≤ 100000.

第二行包含n个整数,表示初始的序列A (-1000000000 ≤ Ai ≤ 1000000000)。

接下来Q行询问,格式如题目描述。

Output

对于每一个Q开头的询问,你需要输出相应的答案,每个答案一行。

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9

15

区间更新区间求和,拿来用splay练练手

#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<functional>
using namespace std;
typedef unsigned long long ull;
typedef long long LL;
const int maxn = 1e5 + 10;
int n, m, l, r, c, root, a[maxn];
char s[10];

struct Splays
{
	const static int maxn = 1e5 + 10;
	const static int INF = 0x7FFFFFFF;
	int ch[maxn][2], F[maxn], U[maxn], C[maxn], A[maxn], sz, G[maxn];
	LL S[maxn];
	int Node(int f, int u, int c) { C[sz] = 1; S[sz] = A[sz] = c; G[sz] = ch[sz][0] = ch[sz][1] = 0; F[sz] = f; U[sz] = u; return sz++; }
	void clear(){ sz = 1; ch[0][0] = ch[0][1] = C[0] = A[0] = U[0] = F[0] = S[0] = G[0] = 0; }
	void Pushdown(int x)
	{
		if (!G[x]) return;
		if (ch[x][0]) G[ch[x][0]] += G[x], S[ch[x][0]] += (LL)G[x] * C[ch[x][0]];
		if (ch[x][1]) G[ch[x][1]] += G[x], S[ch[x][1]] += (LL)G[x] * C[ch[x][1]];
		A[x] += G[x];	G[x] = 0;
	}
	void rotate(int x, int k)
	{
		int y = F[x]; ch[y][!k] = ch[x][k]; F[ch[x][k]] = y;
		if (F[y]) ch[F[y]][y == ch[F[y]][1]] = x;
		F[x] = F[y];    F[y] = x;	ch[x][k] = y;
		C[x] = C[y];	C[y] = C[ch[y][0]] + C[ch[y][1]] + 1;
		S[x] = S[y];	S[y] = S[ch[y][0]] + S[ch[y][1]] + A[y];
	}
	void Splay(int x, int r)
	{
		for (int fa = F[r]; F[x] != fa;)
		{
			if (F[F[x]] == fa) { rotate(x, x == ch[F[x]][0]); return; }
			int y = x == ch[F[x]][0], z = F[x] == ch[F[F[x]]][0];
			y^z ? (rotate(x, y), rotate(x, z)) : (rotate(F[x], z), rotate(x, y));
		}
	}
	void insert(int &x, int u)
	{
		for (int i = x; i; i = ch[i][U[i] < u])
		{
			Pushdown(i);
			if (u == U[i]){	Splay(i, x); x = i; break;	}
		}
	}
	void add(int &x, int l, int r, int c)
	{
		insert(x, l - 1);
		insert(ch[x][1], r + 1);
		G[ch[ch[x][1]][0]] += c;
		S[ch[ch[x][1]][0]] += (LL)c*C[ch[ch[x][1]][0]];
		S[ch[x][1]] += (LL)c*C[ch[ch[x][1]][0]];
		S[x] += (LL)c*C[ch[ch[x][1]][0]];
	}
	void find(int &x, int l, int r)
	{
		insert(x, l - 1);
		insert(ch[x][1], r + 1);
		printf("%lld\n", S[ch[ch[x][1]][0]]);
	}
	void build(int fa, int &x, int l, int r)
	{
		if (l > r) return;
		if (l == r) { x = Node(fa, l, a[l]); return; }
		int mid = l + r >> 1;
		x = Node(fa, mid, a[mid]);
		build(x, ch[x][0], l, mid - 1);
		build(x, ch[x][1], mid + 1, r);
		C[x] += C[ch[x][0]] + C[ch[x][1]];
		S[x] += S[ch[x][0]] + S[ch[x][1]];
	}
}solve;

int main()
{
	while (scanf("%d%d", &n, &m) != EOF)
	{
		solve.clear();	a[0] = a[n + 1] = root = 0;
		for (int i = 1; i <= n; i++)scanf("%d", &a[i]);
		solve.build(0, root, 0, n + 1);
		while (m--)
		{
			scanf("%s", s);
			if (s[0] == 'Q') scanf("%d%d", &l, &r), solve.find(root, l, r);
			else scanf("%d%d%d", &l, &r, &c), solve.add(root, l, r, c);
		}
	}
	return 0;
}


你可能感兴趣的:(poj)