Description
给出了一个序列,你需要处理如下两种询问。
"C a b c"表示给[a, b]区间中的值全部增加c (-10000 ≤ c ≤ 10000)。
"Q a b" 询问[a, b]区间中所有值的和。
Input
第一行包含两个整数N, Q。1 ≤ N,Q ≤ 100000.
第二行包含n个整数,表示初始的序列A (-1000000000 ≤ Ai ≤ 1000000000)。
接下来Q行询问,格式如题目描述。
Output
对于每一个Q开头的询问,你需要输出相应的答案,每个答案一行。
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 915
区间更新区间求和,拿来用splay练练手
#include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<vector> #include<iostream> #include<algorithm> #include<bitset> #include<functional> using namespace std; typedef unsigned long long ull; typedef long long LL; const int maxn = 1e5 + 10; int n, m, l, r, c, root, a[maxn]; char s[10]; struct Splays { const static int maxn = 1e5 + 10; const static int INF = 0x7FFFFFFF; int ch[maxn][2], F[maxn], U[maxn], C[maxn], A[maxn], sz, G[maxn]; LL S[maxn]; int Node(int f, int u, int c) { C[sz] = 1; S[sz] = A[sz] = c; G[sz] = ch[sz][0] = ch[sz][1] = 0; F[sz] = f; U[sz] = u; return sz++; } void clear(){ sz = 1; ch[0][0] = ch[0][1] = C[0] = A[0] = U[0] = F[0] = S[0] = G[0] = 0; } void Pushdown(int x) { if (!G[x]) return; if (ch[x][0]) G[ch[x][0]] += G[x], S[ch[x][0]] += (LL)G[x] * C[ch[x][0]]; if (ch[x][1]) G[ch[x][1]] += G[x], S[ch[x][1]] += (LL)G[x] * C[ch[x][1]]; A[x] += G[x]; G[x] = 0; } void rotate(int x, int k) { int y = F[x]; ch[y][!k] = ch[x][k]; F[ch[x][k]] = y; if (F[y]) ch[F[y]][y == ch[F[y]][1]] = x; F[x] = F[y]; F[y] = x; ch[x][k] = y; C[x] = C[y]; C[y] = C[ch[y][0]] + C[ch[y][1]] + 1; S[x] = S[y]; S[y] = S[ch[y][0]] + S[ch[y][1]] + A[y]; } void Splay(int x, int r) { for (int fa = F[r]; F[x] != fa;) { if (F[F[x]] == fa) { rotate(x, x == ch[F[x]][0]); return; } int y = x == ch[F[x]][0], z = F[x] == ch[F[F[x]]][0]; y^z ? (rotate(x, y), rotate(x, z)) : (rotate(F[x], z), rotate(x, y)); } } void insert(int &x, int u) { for (int i = x; i; i = ch[i][U[i] < u]) { Pushdown(i); if (u == U[i]){ Splay(i, x); x = i; break; } } } void add(int &x, int l, int r, int c) { insert(x, l - 1); insert(ch[x][1], r + 1); G[ch[ch[x][1]][0]] += c; S[ch[ch[x][1]][0]] += (LL)c*C[ch[ch[x][1]][0]]; S[ch[x][1]] += (LL)c*C[ch[ch[x][1]][0]]; S[x] += (LL)c*C[ch[ch[x][1]][0]]; } void find(int &x, int l, int r) { insert(x, l - 1); insert(ch[x][1], r + 1); printf("%lld\n", S[ch[ch[x][1]][0]]); } void build(int fa, int &x, int l, int r) { if (l > r) return; if (l == r) { x = Node(fa, l, a[l]); return; } int mid = l + r >> 1; x = Node(fa, mid, a[mid]); build(x, ch[x][0], l, mid - 1); build(x, ch[x][1], mid + 1, r); C[x] += C[ch[x][0]] + C[ch[x][1]]; S[x] += S[ch[x][0]] + S[ch[x][1]]; } }solve; int main() { while (scanf("%d%d", &n, &m) != EOF) { solve.clear(); a[0] = a[n + 1] = root = 0; for (int i = 1; i <= n; i++)scanf("%d", &a[i]); solve.build(0, root, 0, n + 1); while (m--) { scanf("%s", s); if (s[0] == 'Q') scanf("%d%d", &l, &r), solve.find(root, l, r); else scanf("%d%d%d", &l, &r, &c), solve.add(root, l, r, c); } } return 0; }