大二训练第二周 - Distance Queries lca

E - Distance Queries
Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare" 

* Line 2+M: A single integer, K. 1 <= K <= 10,000 

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms. 

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart. 

ACcode:

#pragma warning(disable:4786)//使命名长度不受限制
#pragma comment(linker, "/STACK:102400000,102400000")//手工开栈
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define rds(x) scanf("%s",x)
#define rdc(x) scanf("%c",&x)
#define ll long long int
#define maxn 8005
#define mod 1000000007
#define INF 0x3f3f3f3f //int 最大值
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
using namespace std;
int tree[maxn<<2],c[maxn<<2],cnt[maxn<<2],ans[maxn<<2];
inline void pushdown(int st){
    int temp=st<<1;
    c[temp]=c[temp+1]=c[st];
    c[st]=-1;
}
void updata(int st,int left,int right,int L,int R,int id){
    if(L<=left&&R>=right){
        c[st]=id;
        return ;
    }
    if(c[st]==id)return;
    if(c[st]!=-1)pushdown(st);
    int m=(left+right)>>1;
    int temp=st<<1;
    if(L<=m)
        updata(temp,left,m,L,R,id);
    if(R>m)
        updata(temp+1,m+1,right,L,R,id);
}
void qurey(int st,int left,int right){
    if(c[st]>=0){
        FOR(i,left,right)
            cnt[i]=c[st];
        return;
    }
    if(left!=right&&c[st]==-1){
        int m=(right+left)>>1;
        int temp=st<<1;
        qurey(temp,left,m);
        qurey(temp+1,m+1,right);
    }
}
int main(){
    int n;
    while(rd(n)!=EOF){
        MT(c,-1);
        int a,b,c;
        FOR(i,1,n){
            rd2(a,b);rd(c);
            if(a>=b)continue;
            updata(1,1,8000,a+1,b,c);
        }
        MT(cnt,-1);
        qurey(1,1,8000);
        MT(ans,0);
        int i=1;
        while(i<maxn){
            int cc=cnt[i],j=i+1;
            if(cc==-1){++i;continue;}
            while(cnt[j]!=-1&&cnt[j]==cc&&j<maxn)++j;
            ++ans[cc];
            i=j;
        }
        FOR(i,0,maxn)
            if(ans[i])
                printf("%d %d\n",i,ans[i]);
        printf("\n");
    }
    return 0;
}
/*
5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
4
0 1 1
3 4 1
1 3 2
1 3 1
6
0 1 0
1 2 1
2 3 1
1 2 0
2 3 0
1 2 1
*/


你可能感兴趣的:(C++,线段树)