poj 2125(最小割)

Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7355   Accepted: 2338   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex. 
Alice assigns two costs to each vertex: Wi + and Wi -. If Bob removes all arcs incoming into the i-th vertex he pays Wi + dollars to Alice, and if he removes outgoing arcs he pays Wi - dollars. 
Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input file describes the graph Alice has drawn. The first line of the input file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The second line contains N integer numbers specifying Wi +. The third line defines Wi - in a similar way. All costs are positive and do not exceed 10 6 . Each of the following M lines contains two integers describing the corresponding arc of the graph. Graph may contain loops and parallel arcs.

Output

On the first line of the output file print W --- the minimal sum Bob must have to remove all arcs from the graph. On the second line print K --- the number of moves Bob needs to do it. After that print K lines that describe Bob's moves. Each line must first contain the number of the vertex and then '+' or '-' character, separated by one space. Character '+' means that Bob removes all arcs incoming into the specified vertex and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +

Source

Northeastern Europe 2003, Northern Subregion


一道经典的最小割问题。每个点拆成两个点,分别代表入点和出点。原图中的边a-b,对应网络流建图中的aout-bin,容量为无穷大。然后每个点出边的代价,对应到原图中源点连向out点的容量,入边的代价,对应in点到汇点的代价。然后在这个图上求最小割。因为out点到in点的边容量为无穷大,所以它们肯定不会在最小割集中,而要使源点和汇点不连通,就只能删out和源点连接的边,或者in和汇点的连边。这刚好就对应了题目的要求。最后求割集的方案,不能直接根据满流的边得到割集(割集里的边一定是满流的,但满流的边不一定构成割集中的边)。而是从源点出发,沿着原图中不是满流的边遍历,能够到的点的集合设为S。再根据S中的点,判断割集。

#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<list>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 1e3 + 5;
const int INF = 1e9;
const double eps = 1e-6;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
#define fi first
#define se second

struct Edge {
  int from, to, cap, flow;
};

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];         // 当前弧指针

  void ClearAll(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
  }

  void AddEdge(int from, int to, int cap) {
    //cout << from << ' ' << to << ' ' << cap << endl;
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }

  void print(int n){
    int use[maxn];
    memset(use, 0, sizeof use);
    queue<int> q;
    while(!q.empty())
        q.pop();
    q.push(0);
    while(!q.empty()){
        int pos = q.front();
        q.pop();
        for(int i = 0;i < G[pos].size();i++){
            Edge& e = edges[G[pos][i]];
            if(e.flow >= e.cap || e.cap==0 || use[e.to])
                continue;
            use[e.to] = 1;
            q.push(e.to);
        }
    }

    vector<int> ans;
    ans.clear();
    for(int i = 1;i <= 2*n;i++){
        if(vis[i]==0 && i<=n){
            ans.push_back(i);
        }
        else if(vis[i]==1 && i>n){
            ans.push_back(i);
        }
    }
    cout << ans.size() << endl;
    for(int i = 0;i < ans.size();i++){
        if(ans[i] > n)
            cout << ans[i]-n << " +" << endl;
        else
            cout << ans[i] << " -" << endl;
    }

  }
};

Dinic g;

int main(){
    int n, m, cost;
    while(scanf("%d%d", &n, &m) != EOF){
        g.ClearAll(2*n+5);
        int source = 0, sink = 2*n+1;
        for(int i = 1;i <= n;i++){
            scanf("%d", &cost);
            g.AddEdge(i+n, sink, cost);
        }
        for(int i = 1;i <= n;i++){
            scanf("%d", &cost);
            g.AddEdge(source, i, cost);
        }

        while(m--){
            int x, y;
            scanf("%d%d", &x, &y);
            g.AddEdge(x, y+n, INF);
        }
        cout << g.Maxflow(source, sink) << endl;
        g.print(n);
    }
    return 0;
}


你可能感兴趣的:(poj 2125(最小割))