Time Limit: 15000MS | Memory Limit: 131072K | |
Total Submissions: 19250 | Accepted: 8335 | |
Case Time Limit: 5000MS |
Description
As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Officer of TinySoft Corporation, decided to update their famous product - SWODNIW.
The routine consists of N modules, and each of them should run in a certain core. The costs for all the routines to execute on two cores has been estimated. Let's define them as Ai and Bi. Meanwhile, M pairs of modules need to do some data-exchange. If they are running on the same core, then the cost of this action can be ignored. Otherwise, some extra cost are needed. You should arrange wisely to minimize the total cost.
Input
There are two integers in the first line of input data, N and M (1 ≤ N ≤ 20000, 1 ≤ M ≤ 200000) .
The next N lines, each contains two integer, Ai and Bi.
In the following M lines, each contains three integers: a, b, w. The meaning is that if module a and module b don't execute on the same core, you should pay extra w dollars for the data-exchange between them.
Output
Output only one integer, the minimum total cost.
Sample Input
3 1 1 10 2 10 10 3 2 3 1000
Sample Output
13
Source
POJ Monthly--2007.11.25, Zhou Dong
最小割建图。
#include<cstdio> #include<map> #include<queue> #include<cstring> #include<iostream> #include<algorithm> #include<vector> #include<list> #include<set> #include<cmath> using namespace std; const int maxn = 2e4 + 5; const int INF = 1e9; const double eps = 1e-6; typedef unsigned long long ULL; typedef long long LL; typedef pair<int, int> P; #define fi first #define se second struct Edge { int from, to, cap, flow; }; struct Dinic { int n, m, s, t; vector<Edge> edges; // 边数的两倍 vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; // BFS使用 int d[maxn]; // 从起点到i的距离 int cur[maxn]; // 当前弧指针 void ClearAll(int n) { for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void ClearFlow() { for(int i = 0; i < edges.size(); i++) edges[i].flow = 0; } void AddEdge(int from, int to, int cap) { //cout << from << ' ' << to << ' ' << cap << endl; edges.push_back((Edge){from, to, cap, 0}); edges.push_back((Edge){to, from, 0, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); vis[s] = 1; d[s] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow(int s, int t) { this->s = s; this->t = t; int flow = 0; while(BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } }; Dinic g; int main(){ int n, m; while(scanf("%d%d", &n, &m) != EOF){ g.ClearAll(n+5); int source = 0, sink = n+1; for(int i = 1;i <= n;i++){ int a, b; scanf("%d%d", &a, &b); g.AddEdge(source, i, a); g.AddEdge(i, sink, b); } while(m--){ int a, b, w; scanf("%d%d%d", &a, &b, &w); g.AddEdge(a, b, w); g.AddEdge(b, a, w); } cout << g.Maxflow(source, sink) << endl; } return 0; }