计算机串口的引脚说明
序号 |
信号名称 |
符号 |
流向 |
功能 |
2 |
发送数据 |
TXD |
DTE→DCE |
DTE发送串行数据 |
3 |
接收数据 |
RXD |
DTE←DCE |
DTE 接收串行数据 |
4 |
请求发送 |
RTS |
DTE→DCE |
DTE 请求 DCE 将线路切换到发送方式 |
5 |
允许发送 |
CTS |
DTE←DCE |
DCE 告诉 DTE 线路已接通可以发送数据 |
6 |
数据设备准备好 |
DSR |
DTE←DCE |
DCE 准备好 |
7 |
信号地 |
|
|
信号公共地 |
8 |
载波检测 |
DCD |
DTE←DCE |
表示 DCE 接收到远程载波 |
20 |
数据终端准备好 |
DTR |
DTE→DCE |
DTE 准备好 |
22 |
振铃指示 |
RI |
DTE←DCE |
表示 DCE 与线路接通,出现振铃 |
串口操作
串口操作需要的头文件
#include <stdio.h> /*标准输入输出定义*/ #include <stdlib.h> /*标准函数库定义*/ #include <unistd.h> /*Unix 标准函数定义*/ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> /*文件控制定义*/ #include <termios.h> /*PPSIX 终端控制定义*/ #include <errno.h> /*错误号定义*/ |
打开串口
在 Linux 下串口文件是位于 /dev 下的
串口一 为 /dev/ttyS0
串口二 为 /dev/ttyS1
打开串口是通过使用标准的文件打开函数操作:
int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ /* 不能打开串口一*/ perror(" 提示错误!"); } |
设置串口
最基本的设置串口包括波特率设置,效验位和停止位设置。
串口的设置主要是设置 struct termios 结构体的各成员值。
struct termio { unsigned short c_iflag; /* 输入模式标志 */ unsigned short c_oflag; /* 输出模式标志 */ unsigned short c_cflag; /* 控制模式标志*/ unsigned short c_lflag; /* local mode flags */ unsigned char c_line; /* line discipline */ unsigned char c_cc[NCC]; /* control characters */ }; |
设置这个结构体很复杂,我这里就只说说常见的一些设置:
波特率设置
下面是修改波特率的代码:
struct termios Opt; tcgetattr(fd, &Opt); cfsetispeed(&Opt,B19200); /*设置为19200Bps*/ cfsetospeed(&Opt,B19200); tcsetattr(fd,TCANOW,&Opt); |
设置波特率的例子函数:
/** *@brief 设置串口通信速率 *@param fd 类型 int 打开串口的文件句柄 *@param speed 类型 int 串口速度 *@return void */ int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B38400, B19200, B9600, B4800, B2400, B1200, B300, }; int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9600, 4800, 2400, 1200, 300, }; void set_speed(int fd, int speed){ int i; int status; struct termios Opt; tcgetattr(fd, &Opt); for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) { if (speed == name_arr[i]) { tcflush(fd, TCIOFLUSH); cfsetispeed(&Opt, speed_arr[i]); cfsetospeed(&Opt, speed_arr[i]); status = tcsetattr(fd1, TCSANOW, &Opt); if (status != 0) { perror("tcsetattr fd1"); return; } tcflush(fd,TCIOFLUSH); } } } |
效验位和停止位的设置:
无效验 |
8位 |
Option.c_cflag &= ~PARENB; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS8; |
奇效验(Odd) |
7位 |
Option.c_cflag |= ~PARENB; Option.c_cflag &= ~PARODD; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS7; |
偶效验(Even) |
7位 |
Option.c_cflag &= ~PARENB; Option.c_cflag |= ~PARODD; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS7; |
Space效验 |
7位 |
Option.c_cflag &= ~PARENB; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= &~CSIZE; Option.c_cflag |= CS8; |
设置效验的函数:
/** *@brief 设置串口数据位,停止位和效验位 *@param fd 类型 int 打开的串口文件句柄 *@param databits 类型 int 数据位 取值 为 7 或者8 *@param stopbits 类型 int 停止位 取值为 1 或者2 *@param parity 类型 int 效验类型 取值为N,E,O,,S */ int set_Parity(int fd,int databits,int stopbits,int parity) { struct termios options; if ( tcgetattr( fd,&options) != 0) { perror("SetupSerial 1"); return(FALSE); } options.c_cflag &= ~CSIZE; switch (databits) /*设置数据位数*/ { case 7: options.c_cflag |= CS7; break; case 8: options.c_cflag |= CS8; break; default: fprintf(stderr,"Unsupported data size\n"); return (FALSE); } switch (parity) { case 'n': case 'N': options.c_cflag &= ~PARENB; /* Clear parity enable */ options.c_iflag &= ~INPCK; /* Enable parity checking */ break; case 'o': case 'O': options.c_cflag |= (PARODD | PARENB); /* 设置为奇效验*/ options.c_iflag |= INPCK; /* Disnable parity checking */ break; case 'e': case 'E': options.c_cflag |= PARENB; /* Enable parity */ options.c_cflag &= ~PARODD; /* 转换为偶效验*/ options.c_iflag |= INPCK; /* Disnable parity checking */ break; case 'S': case 's': /*as no parity*/ options.c_cflag &= ~PARENB; options.c_cflag &= ~CSTOPB;break; default: fprintf(stderr,"Unsupported parity\n"); return (FALSE); } /* 设置停止位*/ switch (stopbits) { case 1: options.c_cflag &= ~CSTOPB; break; case 2: options.c_cflag |= CSTOPB; break; default: fprintf(stderr,"Unsupported stop bits\n"); return (FALSE); } /* Set input parity option */ if (parity != 'n') options.c_iflag |= INPCK; tcflush(fd,TCIFLUSH); options.c_cc[VTIME] = 150; /* 设置超时15 seconds*/ options.c_cc[VMIN] = 0; /* Update the options and do it NOW */ if (tcsetattr(fd,TCSANOW,&options) != 0) { perror("SetupSerial 3"); return (FALSE); } return (TRUE); } |
需要注意的是:
如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/ options.c_oflag &= ~OPOST; /*Output*/ |
读写串口
设置好串口之后,读写串口就很容易了,把串口当作文件读写就是。
· 发送数据
char buffer[1024];int Length;int nByte;nByte = write(fd, buffer ,Length) |
· 读取串口数据
使用文件操作read函数读取,如果设置为原始模式(Raw Mode)传输数据,那么read函数返回的字符数是实际串口收到的字符数。
可以使用操作文件的函数来实现异步读取,如fcntl,或者select等来操作。
char buff[1024];int Len;int readByte = read(fd,buff,Len); |
关闭串口
关闭串口就是关闭文件。
close(fd); |
例子
下面是一个简单的读取串口数据的例子,使用了上面定义的一些函数和头文件
/**********************************************************************代码说明:使用串口二测试的,发送的数据是字符, 但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号。我测试使用的是单片机发送数据到第二个串口,测试通过。 **********************************************************************/ #define FALSE -1 #define TRUE 0 /*********************************************************************/ int OpenDev(char *Dev) { int fd = open( Dev, O_RDWR ); //| O_NOCTTY | O_NDELAY if (-1 == fd) { perror("Can't Open Serial Port"); return -1; } else return fd; } int main(int argc, char **argv){ int fd; int nread; char buff[512]; char *dev = "/dev/ttyS1"; //串口二 fd = OpenDev(dev); set_speed(fd,19200); if (set_Parity(fd,8,1,'N') == FALSE) { printf("Set Parity Error\n"); exit (0); } while (1) //循环读取数据 { while((nread = read(fd, buff, 512))>0) { printf("\nLen %d\n",nread); buff[nread+1] = '\0'; printf( "\n%s", buff); } } //close(fd); // exit (0); } |