车牌识别大概步骤可分为:车牌定位,字符分割,字符识别三个步骤。
细分点可以有以下几个步骤:
(1)将图片灰度化与二值化
(2)去噪,然后切割成一个一个的字符
(3)提取每一个字符的特征,生成特征矢量或特征矩阵
(4)分类与学习。将特征矢量或特征矩阵与样本库进行比对,挑选出相似的那类样本,将这类样本的值作为输出结果。
下面是车牌识别的第一个步骤,opencv源代码中sample有一个识别矩形的例子,网上资料说改改此代码就可以定位车牌,没有验证过,先贴个代码,权当记录一下,有时间的话再去实践一下。
也可参考以下文章:
http://blog.csdn.net/hbclc/archive/2007/10/14/1824365.aspx
代码如下:
//
// The full "Square Detector" program.
// It loads several images subsequentally and tries to find squares in
// each image
//
#ifdef _CH_
#pragma package <opencv>
#endif
#define CV_NO_BACKWARD_COMPATIBILITY
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
double dx1 = pt1->x - pt0->x;
double dy1 = pt1->y - pt0->y;
double dx2 = pt2->x - pt0->x;
double dy2 = pt2->y - pt0->y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
CvSeq* contours;
int i, c, l, N = 11;
CvSize sz = cvSize( img->width & -2, img->height & -2 ); //保证最后一位是偶数,by sing 2010-10-11
IplImage* timg = cvCloneImage( img ); // make a copy of input image
IplImage* gray = cvCreateImage( sz, 8, 1 );
IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
IplImage* tgray;
CvSeq* result;
double s, t;
// create empty sequence that will contain points -
// 4 points per square (the square's vertices)
CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
// select the maximum ROI in the image
// with the width and height divisible by 2
cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
// down-scale and upscale the image to filter out the noise
cvPyrDown( timg, pyr, 7 );
cvPyrUp( pyr, timg, 7 );
tgray = cvCreateImage( sz, 8, 1 );
// find squares in every color plane of the image
for( c = 0; c < 3; c++ )
{
// extract the c-th color plane
cvSetImageCOI( timg, c+1 );
cvCopy( timg, tgray, 0 );
// try several threshold levels
for( l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny( tgray, gray, 0, thresh, 5 );
// dilate canny output to remove potential
// holes between edge segments
cvDilate( gray, gray, 0, 1 );
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
}
// find contours and store them all as a list
cvFindContours( gray, storage, &contours, sizeof(CvContour),
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
// test each contour
while( contours )
{
// approximate contour with accuracy proportional
// to the contour perimeter
result = cvApproxPoly( contours, sizeof(CvContour), storage,
CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( result->total == 4 &&
cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
cvCheckContourConvexity(result) )
{
s = 0;
for( i = 0; i < 5; i++ )
{
// find minimum angle between joint
// edges (maximum of cosine)
if( i >= 2 )
{
t = fabs(angle(
(CvPoint*)cvGetSeqElem( result, i ),
(CvPoint*)cvGetSeqElem( result, i-2 ),
(CvPoint*)cvGetSeqElem( result, i-1 )));
s = s > t ? s : t;
}
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( s < 0.3 )
for( i = 0; i < 4; i++ )
cvSeqPush( squares,
(CvPoint*)cvGetSeqElem( result, i ));
}
// take the next contour
contours = contours->h_next;
}
}
}
// release all the temporary images
cvReleaseImage( &gray );
cvReleaseImage( &pyr );
cvReleaseImage( &tgray );
cvReleaseImage( &timg );
return squares;
}
// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
CvSeqReader reader;
IplImage* cpy = cvCloneImage( img );
int i;
// initialize reader of the sequence
cvStartReadSeq( squares, &reader, 0 );
// read 4 sequence elements at a time (all vertices of a square)
for( i = 0; i < squares->total; i += 4 )
{
CvPoint pt[4], *rect = pt;
int count = 4;
// read 4 vertices
CV_READ_SEQ_ELEM( pt[0], reader );
CV_READ_SEQ_ELEM( pt[1], reader );
CV_READ_SEQ_ELEM( pt[2], reader );
CV_READ_SEQ_ELEM( pt[3], reader );
// draw the square as a closed polyline
cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
}
// show the resultant image
cvShowImage( wndname, cpy );
cvReleaseImage( &cpy );
}
char* names[] = { "pic1.png", "pic2.png", "pic3.png",
"pic4.png", "pic5.png", "pic6.png", 0 };
int main(int argc, char** argv)
{
int i, c;
// create memory storage that will contain all the dynamic data
storage = cvCreateMemStorage(0);
for( i = 0; names[i] != 0; i++ )
{
// load i-th image
img0 = cvLoadImage( names[i], 1 );
if( !img0 )
{
printf("Couldn't load %s/n", names[i] );
continue;
}
img = cvCloneImage( img0 );
// create window and a trackbar (slider) with parent "image" and set callback
// (the slider regulates upper threshold, passed to Canny edge detector)
cvNamedWindow( wndname, 1 );
// find and draw the squares
drawSquares( img, findSquares4( img, storage ) );
// wait for key.
// Also the function cvWaitKey takes care of event processing
c = cvWaitKey(0);
// release both images
cvReleaseImage( &img );
cvReleaseImage( &img0 );
// clear memory storage - reset free space position
cvClearMemStorage( storage );
if( (char)c == 27 )
break;
}
cvDestroyWindow( wndname );
return 0;
}
这几天研究了一下车牌字符分割的问题,前提是已经进行了车牌定位,角度校正等预处理。
用到的主要知识有:二值化,形态学操作,轮廓查找等。
字符分割网上资料比较少,本人接触opencv一段时间,自己瞎搞了一下,以此抛砖引玉,希望与各位交流一下。
以下为全部源代码:
//==============================================
//write by sing
//2010-10-10
//==============================================
#include "stdafx.h"
//找出含车牌文字的最左端
void findX(IplImage* img, int* min, int* max)
{
int found = 0;
CvScalar maxVal = cvRealScalar(img->width * 255);
CvScalar val = cvRealScalar(0);
CvMat data;
int minCount = img->width * 255 / 5;
int count = 0;
for (int i = 0; i < img->width; i++) {
cvGetCol(img, &data, i);
val = cvSum(&data);
if (val.val[0] < maxVal.val[0]) {
count = val.val[0];
if (count > minCount && count < img->width * 255) {
*max = i;
if (found == 0) {
*min = i;
found = 1;
}
}
}
}
}
//找出含车牌文字的最上端,排除两颗螺丝的位置
void findY(IplImage* img, int* min, int* max)
{
int found = 0;
CvScalar maxVal = cvRealScalar(img->height * 255);
CvScalar val = cvRealScalar(0);
CvMat data;
int minCount = img->width * 255 / 5;
int count = 0;
for (int i = 0; i < img->height; i++) {
cvGetRow(img, &data, i);
val = cvSum(&data);
if (val.val[0] < maxVal.val[0]) {
count = val.val[0];
if (count > minCount && count < img->height * 255) {
*max = i;
if (found == 0) {
*min = i;
found = 1;
}
}
}
}
}
//车牌字符的最小区域
CvRect findArea(IplImage* img)
{
int minX, maxX;
int minY, maxY;
findX(img, &minX, &maxX);
findY(img, &minY, &maxY);
CvRect rc = cvRect(minX, minY, maxX - minX, maxY - minY);
return rc;
}
int main(int argc, char* argv[])
{
IplImage* imgSrc = cvLoadImage("cp.jpg", CV_LOAD_IMAGE_COLOR);
IplImage* img_gray = cvCreateImage(cvGetSize(imgSrc), IPL_DEPTH_8U, 1);
cvCvtColor(imgSrc, img_gray, CV_BGR2GRAY);
cvThreshold(img_gray, img_gray, 100, 255, CV_THRESH_BINARY);
//寻找最小区域,并截取
CvRect rc = findArea(img_gray);
cvSetImageROI(img_gray, rc);
IplImage* img_gray2 = cvCreateImage(cvSize(rc.width, rc.height), IPL_DEPTH_8U, 1);
cvCopyImage(img_gray, img_gray2);
cvResetImageROI(img_gray);
IplImage* imgSrc2 = cvCreateImage(cvSize(rc.width, rc.height), IPL_DEPTH_8U, 3);
cvSetImageROI(imgSrc, rc);
cvCopyImage(imgSrc, imgSrc2);
cvResetImageROI(imgSrc);
//形态学
cvMorphologyEx(img_gray2, img_gray2, NULL, NULL, CV_MOP_CLOSE);
CvSeq* contours = NULL;
CvMemStorage* storage = cvCreateMemStorage(0);
int count = cvFindContours(img_gray2, storage, &contours,
sizeof(CvContour), CV_RETR_EXTERNAL);
int idx = 0;
char szName[56] = {0};
for (CvSeq* c = contours; c != NULL; c = c->h_next) {
//cvDrawContours(imgSrc2, c, CV_RGB(255, 0, 0), CV_RGB(255, 255, 0), 100);
CvRect rc = cvBoundingRect(c);
cvDrawRect(imgSrc2, cvPoint(rc.x, rc.y), cvPoint(rc.x + rc.width, rc.y + rc.height), CV_RGB(255, 0, 0));
if (rc.width < imgSrc2->width / 10 && rc.height < imgSrc2->height / 5) {
continue;
}
IplImage* imgNo = cvCreateImage(cvSize(rc.width, rc.height), IPL_DEPTH_8U, 3);
cvSetImageROI(imgSrc2, rc);
cvCopyImage(imgSrc2, imgNo);
cvResetImageROI(imgSrc2);
sprintf(szName, "wnd_%d", idx++);
cvNamedWindow(szName);
cvShowImage(szName, imgNo);
cvReleaseImage(&imgNo);
}
cvNamedWindow("src");
cvShowImage("src", imgSrc2);
cvWaitKey(0);
cvReleaseMemStorage(&storage);
cvReleaseImage(&imgSrc);
cvReleaseImage(&imgSrc2);
cvReleaseImage(&img_gray);
cvReleaseImage(&img_gray2);
cvDestroyAllWindows();
return 0;
}