POJ 2677 tour(双调欧几里得旅行商问题)

思路(转载):

欧几里得旅行商问题是对平面上给定的n个点确定一条连接各点的最短闭合旅程的问题。如图(a)给出了一个7个点问题的解。这个问题的一般形式是NP完全的,故其解需要多于多项式的时间。
J.L. Bentley 建议通过只考虑双调旅程(bitonic tour)来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n*n)时间的算法。

POJ 2677 tour(双调欧几里得旅行商问题)_第1张图片图a POJ 2677 tour(双调欧几里得旅行商问题)_第2张图片 图b

注:在一个单位栅格上显示的平面上的七个点。 a)最短闭合路线,长度大约是24.89。这个路线不是双调的。b)相同点的集合上的最短双调闭合路线。长度大约是25.58。

这是一个算导上的思考题15-1。
首先将给出的点排序,关键字x,重新编号,从左至右1,2,3,…,n。

定义 p[i][j] ,表示结点i到结点j之间的距离。
定义 d[i][j] ,表示从i连到1,再从1连到j,(注意,i>j,且并没有相连。)

POJ 2677 tour(双调欧几里得旅行商问题)_第3张图片
对于任意一个点i来说,有两种连接方法,一种是如图(a)所示,i与i-1相连,另一种呢是如图(b),i与i-1不相连。

根据双调旅程,我们知道结点n一定与n相连,那么,如果我们求的d[n][n-1],只需将其加上p[n-1][n]就是最短双调闭合路线。

根据上图,很容易写出方程式:

dp[i][j]=dp[i1][j]+dist[i][i1];
dp[i][i1]=min(dp[i][i1],dp[i1][j]+dist[j][i]);

注意

G++浮点数的标准输出是 %f ,而C++浮点数的标准输出%lf,在这边会被坑到。

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e3;

struct Point {
    double x, y;
}point[N];
double dp[N][N];

bool cmp(Point a, Point b) {
    if(a.x != b.x)
        return a.x < b.x;
    return a.y < b.y;
}

inline double dis(int i, int j) {
    double x = point[i].x - point[j].x;
    double y = point[i].y - point[j].y;
    return sqrt(x*x + y*y);
}
/* dp[i+1][j] = dp[i][j] + dis(i,i+1); dp[i+1][i] = min(dp[i][j] + dis(j, i+1)) */
double tsp(int n) {
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j < i; j++) {
            dp[i][j] = dp[j][i] = INF;
        }
    }
    for(int i = 1; i <= n; i++) {
        dp[i][1] = dis(i, 1);
    }
    for(int i = 2; i < n; i++) {
        for(int j = 1; j < i; j++) {
            dp[i+1][j] = dp[i][j] + dis(i, i+1);
            dp[i+1][i] = min(dp[i+1][i], dp[i][j] + dis(j, i+1));
        }
    }
    return dp[n][n-1] + dis(n, n-1);
}

int main() {
    int n;
    while(scanf("%d", &n) != EOF) {
        for(int i = 1; i <= n; i++) {
            scanf("%lf%lf", &point[i].x, &point[i].y);
        }
        sort(point+1, point+1+n, cmp);
        double ans = tsp(n);
        printf("%.2f\n", ans);
    }
    return 0;
}

你可能感兴趣的:(poj,2677)