南邮 OJ 1217 双色Hanoi塔问题

双色Hanoi塔问题

时间限制(普通/Java) :  1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
总提交 : 58            测试通过 : 37 

比赛描述

设A、B、C是3 个塔座。开始时,在塔座A 上有一叠共n 个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,……,n,奇数号圆盘着蓝色,偶数号圆盘着红色,如图所示。现要求将塔座A 上的这一叠圆盘移到塔座B 上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:
规则(1):每次只能移动1 个圆盘;
规则(2):任何时刻都不允许将较大的圆盘压在较小的圆盘之上;
规则(3):任何时刻都不允许将同色圆盘叠在一起;
规则(4):在满足移动规则(1)-(3)的前提下,可将圆盘移至A,B,C 中任一塔座上。


试设计一个算法,用最少的移动次数将塔座A上的n个圆盘移到塔座B上,并仍按同样顺序叠置。
对于给定的正整数n,编程计算最优移动方案。



输入

输入的第1行是给定的正整数n

输出

输出计算出的最优移动方案 ,其中每一行由一个正整数k 和2 个字符c1 和c2组成,表示将第k个圆盘从塔座c1移到塔座c2上。 

样例输入

1

样例输出

1 A B
2 A C
1 B C
3 A B
1 C A
2 C B
1 A B

提示

 

题目来源

算法设计与实验题解



#include<iostream>
using namespace std;
//将n号圆盘从a移动到b
void move(int n,char a,char b){
	cout<<n<<" "<<a<<" "<<b<<endl;
}
//将a上的前n个圆盘通过b移动到c
void hanoi(int n,char a,char b,char c){
	if(n==1){
		move(n,a,b);
	}else{
		hanoi(n-1,a,c,b);
		move(n,a,b);
		hanoi(n-1,c,b,a);
	}
}
int main(){
	int n;
	cin>>n;
	hanoi(n,'A','B','C');
}





你可能感兴趣的:(ACM,hanoi,南邮OJ)