HDU 5691 Sitting in Line (状压dp)

Sitting in Line

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 290    Accepted Submission(s): 140


Problem Description
度度熊是他同时代中最伟大的数学家,一切数字都要听命于他。现在,又到了度度熊和他的数字仆人们玩排排坐游戏的时候了。游戏的规则十分简单,参与游戏的N个整数将会做成一排,他们将通过不断交换自己的位置,最终达到所有相邻两数乘积的和最大的目的,参与游戏的数字有整数也有负数。度度熊为了在他的数字仆人面前展现他的权威,他规定某些数字只能在坐固定的位置上,没有被度度熊限制的数字则可以自由地交换位置。

Input
第一行一个整数 T ,表示 T 组数据。
每组测试数据将以如下格式从标准输入读入:

N

a1p1

a2p2

:

aNPN

第一行,整数 N(1N16) ,代表参与游戏的整数的个数。
从第二行到第 (N+1) 行,每行两个整数, ai(10000ai10000) pi(pi=1 0pi<N) ,以空格分割。 ai 代表参与游戏的数字的值, pi 代表度度熊为该数字指定的位置,如果 pi=1 ,代表该数字的位置不被限制。度度熊保证不会为两个数字指定相同的位置。
 
Output
第一行输出:"Case #i:"。 i 代表第 i 组测试数据。
第二行输出数字重新排列后最大的所有相邻两数乘积的和,即 max{a1a2+a2a3+......+aN1aN}
 
Sample Input
   
   
   
   
2 6 -1 0 2 1 -3 2 4 3 -5 4 6 5 5 40 -1 50 -1 30 -1 20 -1 10 -1
 
Sample Output
   
   
   
   
Case #1: -70 Case #2: 4600
 
Source
2016"百度之星" - 初赛(Astar Round2A)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5691

题目分析:Astar第一轮初赛第二题,好气啊这题,比赛的时候T,结束以后用T的代码去HDU交,结果ac,已经是第二次在比赛时候出现这种情况了,不过比赛时候的做法时间复杂度好像和正解也就多了点常数,dp[i][j]表示选数状态为j时,最后选择的是第i个时的最大值,初始化放第一个位置时dp值为0,其余负无穷,然后枚举状态,枚举状态对应的最后选择的位置,假设现在放了x个,要放第x+1个时对应的状态位必须为0,且放的那个数,要么p值为1可以随便放,要么正好被要求放在那个位置,至于当前状态已放了的个数可以通过__builtin_popcount求二进制表示中1的个数,然后dp一下即可,比赛的时候多用了一个sta[i][j]记录第j个有i个1的状态值,然后枚举的。

比赛代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 1 << 17;
int dp[20][MAX], sta[20][MAX], a[20], p[20], cnt[20];

int main()
{
    int T, n;
    scanf("%d", &T);
    for(int ca = 1; ca <= T; ca ++)
    {
        printf("Case #%d:\n", ca);
        scanf("%d", &n);
        for(int i = 0; i < n; i++)
            scanf("%d %d", &a[i], &p[i]);
        for(int i = 0; i < n; i++)
            for(int j = 0; j < (1 << n); j++)
                dp[i][j] = -INF;
        for(int i = 0; i < n; i++)
            if(p[i] == -1 || p[i] == 0)
                dp[i][1 << i] = 0;
        memset(cnt, 0, sizeof(cnt));
        for(int i = 0; i < (1 << n); i++)
        {
            int num1 = __builtin_popcount(i);
            sta[num1][cnt[num1]] = i;
            cnt[num1] ++;
        }
        for(int i = 0; i < n; i++)
            for(int k = 0; k < n; k++)
                if(p[k] == -1 || p[k] == i)
                    for(int y = 0; y < cnt[i]; y++)
                        if(!((1 << k) & sta[i][y]))
                            for(int x = 0; x < n; x++)
                                if(x != k)
                                {
                                    int now = (sta[i][y]) | (1 << k);
                                    dp[k][now] = max(dp[k][now], dp[x][sta[i][y]] + a[x] * a[k]);
                                }
        int ans = -INF;
        for(int i = 0; i < n; i++)
            ans = max(ans, dp[i][(1 << n) - 1]);
        printf("%d\n", ans);
    }
}

优化代码:
#include <cstdio>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 1 << 17;
int dp[20][MAX], sta[20][MAX], a[20], p[20], cnt[20];

int main()
{
    int T, n;
    scanf("%d", &T);
    for(int ca = 1; ca <= T; ca ++)
    {
        printf("Case #%d:\n", ca);
        scanf("%d", &n);
        for(int i = 0; i < n; i++)
            scanf("%d %d", &a[i], &p[i]);
        for(int i = 0; i < n; i++)
            for(int j = 0; j < (1 << n); j++)
                dp[i][j] = -INF;
        for(int i = 0; i < n; i++)
            if(p[i] == -1 || p[i] == 0)
                dp[i][1 << i] = 0;
        for(int st = 0; st < (1 << n); st++)
            for(int x = 0; x < n; x++) 
                if(dp[x][st] > -INF)
                    for(int k = 0; k < n; k++)
                        if(p[k] == -1 || p[k] == __builtin_popcount(st))
                            if(!((1 << k) & st) && x != k) 
                                dp[k][st | (1 << k)] = max(dp[k][st | (1 << k)], dp[x][st] + a[x] * a[k]);
        int ans = -INF;
        for(int i = 0; i < n; i++)
            ans = max(ans, dp[i][(1 << n) - 1]);
        printf("%d\n", ans);
    }
}

你可能感兴趣的:(HDU,状压dp)