Miller-Rabin素性测试算法是概率算法,不是确定算法。然而测试的计算速度快,比较有效,被广泛使用。
另外一个值得介绍的算法是AKS算法,是三位印度人发明的,AKS是他们的姓氏首字母。ASK算法是确定算法,其时间复杂度相当于多项式的,属于可计算的算法。
代码来自Sanfoundry的C++ Program to Implement Miller Rabin Primality Test。
源程序如下:
/* * C++ Program to Implement Miller Rabin Primality Test */ #include <iostream> #include <cstring> #include <cstdlib> #define ll long long using namespace std; /* * calculates (a * b) % c taking into account that a * b might overflow */ ll mulmod(ll a, ll b, ll mod) { ll x = 0,y = a % mod; while (b > 0) { if (b % 2 == 1) { x = (x + y) % mod; } y = (y * 2) % mod; b /= 2; } return x % mod; } /* * modular exponentiation */ ll modulo(ll base, ll exponent, ll mod) { ll x = 1; ll y = base; while (exponent > 0) { if (exponent % 2 == 1) x = (x * y) % mod; y = (y * y) % mod; exponent = exponent / 2; } return x % mod; } /* * Miller-Rabin primality test, iteration signifies the accuracy */ bool Miller(ll p,int iteration) { if (p < 2) { return false; } if (p != 2 && p % 2==0) { return false; } ll s = p - 1; while (s % 2 == 0) { s /= 2; } for (int i = 0; i < iteration; i++) { ll a = rand() % (p - 1) + 1, temp = s; ll mod = modulo(a, temp, p); while (temp != p - 1 && mod != 1 && mod != p - 1) { mod = mulmod(mod, mod, p); temp *= 2; } if (mod != p - 1 && temp % 2 == 0) { return false; } } return true; } //Main int main() { int iteration = 5; ll num; cout<<"Enter integer to test primality: "; cin>>num; if (Miller(num, iteration)) cout<<num<<" is prime"<<endl; else cout<<num<<" is not prime"<<endl; return 0; }