版权声明:本文为博主原创文章,未经博主允许不得转载。
目录(?)[+]
通过前两节HAL框架分析和JNI概述,我们对Android提供的Stub HAL有了比较详细的了解了,下面我们来看下led的实例,写驱动点亮led灯,就如同写程序,学语言打印HelloWorld一样,如果说打印HelloWorld是一门新语言使用的第一声吆喝,那么点亮led灯就是我们学习HAL的一座灯塔,指挥我们在后面的复杂的HAL代码里准确找到方向。
上图描述了我们Led实例的框架层次:
l LedDemo.Java:是我们写的Android应用程序
l LedService.java:是根据Led HAL封装的Java框架层的API,主要用于向应用层提供框架层API,它属于Android的框架层
l libled_runtime.so:由于Java代码不能访问HAL层,该库是LedService.java对应的本地代码部分
l led.default.so:针对led硬件的HAL代码
LedDemo通过LedService提供的框架层API访问Led设备,LedService对于LedDemo应用程序而言是Led设备的服务提供者,LedService运行在Dalvik中没有办法直接访问Led硬件设备,它只能将具体的Led操作交给本地代码来实现,通过JNI来调用Led硬件操作的封装库libled_runtime.so,由HAL Stub框架可知,在libled_runtime.so中首先查找注册为led的硬件设备module,找到之后保存其操作接口指针在本地库中等待框架层LedService调用。led.default.so是HAL层代码,它是上层操作的具体实施者,它并不是一个动态库(也就是说它并没有被任何进程加载并链接),它只是在本地代码查找硬件设备module时通过ldopen”杀鸡取卵”找module,返回该硬件module对应的device操作结构体中封装的函数指针。
其调用时序如下:
我们来看下led实例的目录结构:
主要文件如下:
com.hello.LedService.cpp:它在frameworks/services/jni目录下,是的Led本地服务代码
led.c:HAL代码
led.h:HAL代码头文件
LedDemo.java:应用程序代码
LedService.java:Led框架层服务代码
在Android的源码目录下,框架层服务代码应该放在frameworks/services/java/包名/目录下,由Android的编译系统统一编译生成system/framework/services.jar文件,由于我们的测试代码属于厂商定制代码,尽量不要放到frameworks的源码树里,我将其和LedDemo应用程序放在一起了,虽然这种方式从Android框架层次上不标准。
另外,本地服务代码的文件名要和对应的框架层Java代码的名字匹配(包名+类文件名,包目录用“_“代替)。有源码目录里都有对应的一个Android.mk文件,它是Android编译系统的指导文件,用来编译目标module。
1) Android.mk文件分析
先来看下led源码中①号Android.mk:
代码很简单,表示包含当前目录下所有的Android.mk文件
先来看下led_app目录下的③号Android.mk:
上述代码中都加了注释,基本上每一个编译目标都有类似上述的编译变量的声明:
LOCAL_MODULE_TAGS
LOCAL_PACKAGE_NAME
LOCAL_SRC_FILES
由于所有的Android.mk最终被编译系统包含,所以在编译每个目标模块时,都要通过LOCAL_PATH:= $(call my-dir)指定当前目标的目录,然后调用include $(CLEAR_VARS)先清除编译系统依赖的重要的编译变量,再生成新的编译变量。
让我们来看看LedDemo目标对应的源码吧。
2) LedDemo代码分析
学习过Android应用的同学对其目录结构很熟悉,LedDemo的源码在src目录下。
@ led_app/src/com/farsight/LedDemo.java:
代码很简单,Activity上有一个按钮,当Activity初始化时创建LedService对象,按钮按下时通过LedService对象调用其方法set_on()和set_off()。
3) LedService代码分析
我们来看下LedService的代码:
@led_app/src/com/farsight/LedService.java:
通过分析上面代码可知LedService的工作:
l 加载本地服务的库代码
l 在构造方法里调用_init本地代码,对Led进行初始化,并调用get_count得到Led灯的个数
l 为LedDemo应用程序提供两个API:set_on和set_off,这两个API方法实际上也是交给了本地服务代码来操作的
由于Java代码无法直接操作底层硬件,通过JNI方法将具体的操作交给本地底层代码实现,自己只是一个API Provider,即:服务提供者。
让我们来到底层本地代码,先看下底层代码的Android.mk文件:
@ frameworks/Android.mk:
结合前面分析的Android.mk不难看懂这个mk文件。之前的mk文件是编译成Android apk文件,这儿编译成so共享库,所以LOCAL_MODULE和include $(BUILD_SHARED_LIBRARY)与前面mk文件不同,关于Android.mk文件里的变量作用,请查看Android编译系统章节。
总而言之,本地代码编译生成的目标是libled_runtime.so文件。
4) Led本地服务代码分析
我们来看下本地服务的源码:
@ frameworks/services/jni/com_farsight_LedService.cpp:
这儿的代码不太容易读,因为里面是JNI的类型和JNI特性的代码,看代码先找入口。LedService.java框架代码一加载就调用静态初始化语句块里的System.loadLibrary ( "led_runtime" ),加载libled_runtime.so,该库刚好是前面Android.mk文件的目标文件,也就是说LedService加载的库就是由上面的本地代码生成的。当一个动态库被Dalvik加载时,首先在Dalvik会回调该库代码里的JNI_OnLoad函数。也就是说JNI_OnLoad就是本地服务代码的入口函数。
JNI_OnLoad的代码一般来说是死的,使用的时候直接拷贝过来即可,vm->GetEnv会返回JNIEnv指针,而这个指针其实就是Java虚拟机的环境变量,我们可以通过该指针去调用JNI提供的方法,如FindClass等,调用registerMethods方法,在方法里通过JNIEnv的FindClass查找LedService类的引用,然后在该类中注册本地方法与Java方法的映射关系,上层Java代码可以通过这个映射关系调用到本地代码的实现。RegisterNatives方法接收三个参数:
l 第一个参数jclass:要注册哪个类里的本地方法映射关系
l 第二个参数JNINativeMethod*:这是一个本地方法与Java方法映射数组,JNINativeMethod是个结构体,每个元素是一个Java方法到本地方法的映射。
name:表示Java方法名
signature:表示方法的签名
fnPtr:Java方法对应的本地方法指针
l 第三个参数size:映射关系个数
由代码可知,Java方法与本地方法的映射关系如下:
Java方法 |
本地方法 |
void _init() |
jint led_init(JNIEnv *env, jclass clazz) |
int _set_on() |
jint led_setOn(JNIEnv* env, jobject thiz) |
int _set_off() |
jint led_setOff(JNIEnv* env, jobject thiz) |
int _get_count() |
jint get_count(void) |
通过上表可知,本地方法参数中默认会有两个参数:JNIEnv* env, jobject thiz,分别表示JNI环境和调用当前方法的对象引用,当然你也可以不设置这两个参数,在这种情况下你就不能访问Java环境中的成员。本地方法与Java方法的签名必须一致,返回值不一致不会造成错误。
现在我们再来回顾下我们的调用调用流程:
l LedDemo创建了LedService对象
l LedService类加载时加载了对应的本地服务库,在本地服务库里Dalvik自动调用JNI_OnLoad函数,注册Java方法和本地方法映射关系。
根据Java语言特点,当LedDemo对象创建时会调用其构造方法LedService()。
在LedService构造方法里直接调用了本地方法_init和_get_count(通过native保留字声明),也就是说调用了本地服务代码里的jint led_init(JNIEnv *env, jclass clazz)和jintget_count(void)。
在led_init方法里的内容就是我们前面分析HAL框架代码的使用规则了。
l 通过hw_get_module方法查到到注册为LED_HARDWARE_MODULE_ID,即:”led”的module模块。
l 通过与led_module关联的open函数指针打开led设备,返回其device_t结构体,保存在本地代码中,有的朋友可能会问,不是本地方法不能持续保存一个引用吗?由于device_t结构是在open设备时通过malloc分配的,只要当前进程不死,该指针一直可用,在这儿本地代码并没有保存Dalvik里的引用,保存的是mallco的分配空间地址,但是在关闭设备时记得要将该地址空间free了,否则就内存泄漏了。
l 拿到了led设备的device_t结构之后,当LedDemo上的按钮按下时调用LedService对象的set_on和set_off方法,这两个LedService方法直接调用了本地服务代码的对应映射方法,本地方法直接调用使用device_t指向的函数来间接调用驱动操作代码。
好吧,让我们再来看一个详细的时序图:
不用多解释了。
最后一个文件,HAL对应的Android.mk文件:
@ hardware/Android.mk:
注:LOCAL_PRELINK_MODULE:= false要加上,否则编译出错
指定目标名为:led.default
目标输入目录LOCAL_MODULE_PATH为:/system/lib/hw/,不指定会默认输出到/system/lib目录下。
根据前面HAL框架分析可知,HAL Stub库默认加载地址为:/vendor/lib/hw/或/system/lib/hw/,在这两个目录查找:硬件id名.default.so,所以我们这儿指定了HAL Stub的编译目标名为led.default,编译成动态库,输出目录为:$(TARGET_OUT_SHARED_LIBRARIES)/hw,TARGET_OUT_SHARED_LIBRARIES指/system/lib/目录。
5) 深入理解我们从进程空间的概念来分析下我们上面写的代码。
我们前面的示例代码中,将LedDemo.java和LedService.java都放在了一个APK文件里,这也就意味着这个应用程序编译完之后,它会运行在一个Dalvik虚拟机实例中,即:一个进程里,在LedService.java中加载了libled_runtime.so库,通过JNI调用了本地代码,根据动态库的运行原理,我们知道,libled_runtime.so在第一次引用时会被加载到内存中并映射到引用库的进程空间中,我们可以简单理解为引用库的程序和被引用的库在一个进程中,而在libled_runtime.so库中,又通过dlopen打开了库文件led.default.so(该库并没有被库加载器加载,而是被当成一个文件打开的),同样我们可以理解为led.default.so和libled_runtime.so在同一个进程中。
由此可见,上面示例的Led HAL代码全部都在一个进程中实现,在该示例中的LedService功能比较多余,基本上不能算是一个服务。如果LedDemo运行在两个进程中,就意味着两个进程里的LedService不能复用,通常我们所谓的Service服务一般向客户端提供服务并且同时可以为多个客户端服务(如下图),所以我们的示例Led HAL代码不是完美的HAL模型,我们后面章节会再实现一个比较完美的HAL架构。