介绍一下one class classification以及用SVDD(support vector domain description)做one class classification。one class classification 和多类 classification 的思路还是有很大差别。
classification问题一般都是 2 类及 2 类以上的,典型的 2 分类问题比如识别一封邮件是不是垃圾邮件,这里就只有2类,“是”或者“不是”,典型的多类 classification 问题比如说人脸识别,每个人对应的脸就是一个类,然后把待识别的脸分到对应的类去。
那么 one class classification 是什么呢?它只有一个类,然后,识别的结果就是:“是”或者“不是”这个类。
听起来和2类classification问题貌似几乎一样,它们有什么区别呢?区别在于,在2类classification问题中,training set中有2个类,通常称为正例和负例,例如对于垃圾邮件识别问题,正例就是垃圾邮件,负例就是正常邮件,而在one class classification中,就只有一个类。
什么情况下会出现training set中只有一个类的情况?一般是在的确手头上只有一类样本数据的情况下,或者是别的类数据不好确定的情况下。什么叫不好确定呢?举个例子,比如现在有一堆某产品的历史销售数据,记录着买该产品的用户的各种信息(这些信息在特征提取时会用到),然后还有些没买过该产品的用户的数据,想通过2类classification预测他们是否会买该产品,也就是弄2个类,一类是“买”,另一类是“不买”。这时候问题就来了,如果把买了该产品的用户看成正例,没买该产品的用户看成负例,就会出现(1)已经买了的用户,可以明确知道他已经买了,而没买的用户,却不知道他是的确对该产品不感兴趣,还是说想买但由于种种原因暂时没买成。(2)一般来说,没买的用户数会远远大于已经买了的用户数,这会造成training set中正负样本不均衡,使train出来的model有bias。这个时候,就可以使用one class classification的方法来解决,即training set中只有已经买过该产品的用户数据,在识别一个新用户是否会买该产品时,识别结果就是“会”或者“不会”。
one class classification 这如何实现呢?多类 classification 我们都很熟悉了,方法也很多,比如像SVM去寻找一个最优超平面把正负样本分开,总之都涉及到不止一个类的样本,相当于告诉算法这种东西长什么样(这里的长什么样指的是特征提取方法所提取到的提取),那种东西长什么样,于是训练出一个模型能够区分这些东西。问题是在one class classification 只有一个类,这该怎么办呢?
给大家介绍一个方法:SVDD(support vector domain description)。它的基本思想是,既然只有一个class,那么我就训练出一个最小的超球面(超球面是指3维以上的空间中的球面,对应的2维空间中就是曲线,3维空间中就是球面,3维以上的称为超球面),把这堆数据全都包起来,识别一个新的数据点时,如果这个数据点落在超球面内,就是这个类,否则不是。例如对于2维(维数依据特征提取而定,提取的特征多,维数就高,为方便展示,举2维的例子,实际用时不可能维数这么低)数据,大概像下面这个样子:
有人可能会说:图上的曲线并没有把点全都包住嘛~为什么会这样呢?看原理就懂了,下面给大家讲SVDD的原理,SVDD是叫support vector domain description,想必你第一反应就是想到support vector machine(SVM),的确,它的原理和SVM很像,可以用来做 one class svm,如果之前你看过SVM原理,那么下面的讲解你将会感到很熟悉。凡是讲模型,都会有一个优化目标,SVDD的优化目标就是,求一个中心为a,半径为R的最小球面:
使得这个球面满足:
满足这个条件就是说要把training set中的数据点都包在球面里。
这里的是什么东西?如果你看过SVM的话,想必你已经能猜出来它的含义了,它是松弛变量,和经典SVM中的松弛变量的作用相同 ,它的作用就是,使得模型不会被个别极端的数据点给“破坏”了,想象一下,如果大多数的数据都在一个小区域内,只有少数几个异常数据在离它们很远的地方,如果要找一个超球面把它们包住,这个超球面会很大,因为要包住那几个很远的点,这样就使模型对离群点很敏感,说得通俗一点就是,那几个异常的点,虽然没法判定它是否真的是噪声数据,它是因为大数点都在一起,就少数几个不在这里,宁愿把那几个少数的数据点看成是异常的,以免模型为了迎合那几个少数的数据点会做出过大的牺牲,这就是所谓的过拟合(overfitting)。所以容忍一些不满足硬性约束的数据点,给它们一些弹性,同时又要保证training set中的每个数据点都要满足约束,这样在后面才能用Lagrange乘子法来求解,因为Lagrange乘子法中是要包含约束条件的,如果你的数据都不满足约束条件,那就没法用了。注意松弛变量是带有下标 i 的,也就是说它是和每个数据点有关的,每个数据点都有对应的松弛变量,可以理解为:对于每个数据点来说,那个超球面可以是不一样的,根据松弛变量来控制,如果松弛变量的值一样,那超球面就一样。那个 C 嘛,就是调节松弛变量的影响大小,说得通俗一点就是,给那些需要松弛的数据点多少松弛的空间,如果 C 很大的话,那么在 cost function 中,由松弛变量带来的 cost 就大,那么training的时候会把松弛变量调小,这样的结果就是不怎么容忍那些离群点,硬是要把它们包起来,反之如果C比较小,那会给离群点较大的弹性,使得它们可以不被包含进来。现在你明白上面那个图为什么并没有把点全都包住了么?下图展示两张图,第一样图是C 较小时的情形,第二张图是 C 较大时的情形:
现在有了要求解的目标,又有了约束,接下来的求解方法和SVM几乎一样,用的是Lagrangian乘子法:
把上面这堆玩意带回Lagrangian函数,得到:
注意此时,其中是由,和共同推出来的。上面的向量内积也可以像SVM那样用核函数解决:
之后的求解步骤就和SVM中的一样了,挺复杂的,具体请参考SVM原理。
训练结束后,判断一个新的数据点z是否是这个类,那么就看这个数据点是否在训练出来的超球面里面,如果在里面 ,即,则判定为属于这个类。将超球面的中心用支持向量来表示,那么判定新数据是否属于这个类的判定条件就是:
如果使用核函数那就是:
参考:
1)David M.J. Tax, Robert P.W. Duin. Support vector domain description[J]. Pattern Recognition Letters,1999,20:1191-1199;
2)http://blog.csdn.net/qq_15211883/article/details/44245509;
3)http://bbs.csdn.net/topics/390994334;