二值化图像;
利用黑白像素值求差,得到边缘点;
过滤边缘点找到合适区域;
利用cvFitLine2D拟合线。
做的比较粗糙,搜寻时间在10ms左右,希望有研究opencv的朋友斧正。
效果预览:
、
void CvProcess::FindLine( IplImage* orgImg ,//原始图像 IplImage*runImg,//显示用图像 CvRect rec,//roi int thredValue,//二值化阈值 int lineAccuracy,//搜索精度 int SearchDirection,//搜索方向 int EdgePolarity)//搜索方式 黑到白 白到黑 { cvCopy(orgImg,runImg);//原始图像拷贝到显示图像用于显示 IplImage* thrdImg = cvCreateImage(//创建一个单通道二值图像用于各种处理 cvSize(orgImg->width,orgImg->height), IPL_DEPTH_8U, 1); //将原始图像转换为单通道灰度图像 cvCvtColor(runImg,thrdImg,CV_BGR2GRAY); //二值化处理 cvThreshold( thrdImg, thrdImg, thredValue, 255, CV_THRESH_BINARY); // cvNamedWindow(""); // cvShowImage("",thrdImg); if(rec.width>0&&rec.width<IMAGE_WIDTH&&rec.height>0&&rec.width<IMAGE_HEIGHT)//判断是否有适合的ROI区域 { //设置ROI cvSetImageROI(runImg,rec); cvSetImageROI(thrdImg,rec); //搜索边界 CvPoint2D32f *EdgePoint2D = //用于存储搜索到的所有边界点 (CvPoint2D32f *)malloc((IMAGE_HEIGHT*IMAGE_WIDTH) * sizeof(CvPoint2D32f)); CvPoint2D32f *RelEdgePoint2D =//用于存储搜索到的正确的点 (CvPoint2D32f *)malloc((IMAGE_HEIGHT*IMAGE_WIDTH) * sizeof(CvPoint2D32f)); int EdgePoint2DCount=0;//点计数 int RelEdgePoint2DCount=0; //真实点计数 float *line = new float[4]; //用于画逼近线 byte ftData=0,secData=0; //搜索边界点所需资源 //得到ROI区域内的搜索线 std::vector<CLine> searchlines = GetRecLines(rec,lineAccuracy,SearchDirection); switch(SearchDirection)//搜索方向 { case TB : //上到下纵向搜索 for (int i=0;i<thrdImg->roi->width;i++) { for (int j=0;j<thrdImg->roi->height-1;j++) { //上下搜索所有的差值大于200的点 ftData=CV_IMAGE_ELEM(thrdImg,uchar,thrdImg->roi->yOffset+j,thrdImg->roi->xOffset+i);//利用宏直接得到结果 //ftData=(thrdImg->imageData + i * thrdImg->widthStep)[j];//注意这里是 宽度用的是 widthStep 而不是 width secData=CV_IMAGE_ELEM(thrdImg,uchar,thrdImg->roi->yOffset+j+1,thrdImg->roi->xOffset+i); switch(EdgePolarity) { case B2W: if(secData-ftData>200)//黑到白 { for(int n=0;n<searchlines.size();n++)//搜索在搜索线上的点 { if (searchlines[n].PTS.x==i&&searchlines[n].PTS.y<j &&searchlines[n].PTE.y>j) { EdgePoint2D[EdgePoint2DCount]=cvPoint2D32f(i,j); } } if (EdgePoint2DCount>0)//大于2点时比较 { bool realPoint=TRUE; //删除X坐标相同的纵向点,减少逼近时误判几率 for (int m=1;m<=EdgePoint2DCount;m++) { if(EdgePoint2D[EdgePoint2DCount].x == EdgePoint2D[EdgePoint2DCount-m].x) { realPoint=FALSE; } } if(realPoint)//得到非重复点并画出 { RelEdgePoint2D[RelEdgePoint2DCount]=cvPoint2D32f(i,j); cvCircle(runImg,cvPoint(i,j), 1,CV_RGB(255,0,0),2, CV_AA,0); //画点 RelEdgePoint2DCount++; } } EdgePoint2DCount++; } break; case W2B: if(ftData-secData>200)//白到黑 { for(int n=0;n<searchlines.size();n++)//搜索在搜索线上的点 { if (searchlines[n].PTS.x==i&&searchlines[n].PTS.y<j &&searchlines[n].PTE.y>j) { EdgePoint2D[EdgePoint2DCount]=cvPoint2D32f(i,j); } } if (EdgePoint2DCount>0)//大于2点时比较 { bool realPoint=TRUE; //删除X坐标相同的纵向点,减少逼近时误判几率 for (int m=1;m<=EdgePoint2DCount;m++) { if(EdgePoint2D[EdgePoint2DCount].x == EdgePoint2D[EdgePoint2DCount-m].x) { realPoint=FALSE; } } if(realPoint)//得到非重复点并画出 { RelEdgePoint2D[RelEdgePoint2DCount]=cvPoint2D32f(i,j); cvCircle(runImg,cvPoint(i,j), 1,CV_RGB(255,0,0),2, CV_AA,0); //画点 RelEdgePoint2DCount++; } } EdgePoint2DCount++; } break; } } } if(RelEdgePoint2DCount>2)//当找到的点大于2时在搜寻逼近线 { //找出逼近线 cvFitLine2D(RelEdgePoint2D,RelEdgePoint2DCount, CV_DIST_L1,NULL,0.01,0.01,line); CvPoint FirstPoint;//起点 CvPoint LastPoint;//终点 FirstPoint.x=int (line[2]-1000*line[0]); FirstPoint.y=int (line[3]-1000*line[1]); LastPoint.x=int (line[2]+1000*line[0]); LastPoint.y=int (line[3]+1000*line[1]); cvLine( runImg, FirstPoint, LastPoint, CV_RGB(255,0,0), 1, CV_AA);//画出逼近线 } break; case LR : //左到右横向搜索 for (int j=0;j<thrdImg->roi->height;j++) { for (int i=0;i<thrdImg->roi->width-1;i++) { ftData=CV_IMAGE_ELEM(thrdImg,uchar,thrdImg->roi->yOffset+j,thrdImg->roi->xOffset+i);//利用宏直接得到结果 //ftData=(thrdImg->imageData + i * thrdImg->widthStep)[j];//注意这里是 宽度用的是 widthStep 而不是 width secData=CV_IMAGE_ELEM(thrdImg,uchar,thrdImg->roi->yOffset+j,thrdImg->roi->xOffset+i+1); switch(EdgePolarity) { case B2W: if(secData-ftData>200)//黑到白 { for(int n=0;n<searchlines.size();n++)//point in searchlines { if (searchlines[n].PTS.y==j&&searchlines[n].PTS.x<i &&searchlines[n].PTE.x>i) { EdgePoint2D[EdgePoint2DCount]=cvPoint2D32f(i,j); } } if (EdgePoint2DCount>0)//大于2点时比较 { bool realPoint=TRUE; for (int m=1;m<=EdgePoint2DCount;m++)//删除y坐标相同的横向点 { if(EdgePoint2D[EdgePoint2DCount].y == EdgePoint2D[EdgePoint2DCount-m].y) { realPoint=FALSE; } } if(realPoint)//得到非重复点并画出 { RelEdgePoint2D[RelEdgePoint2DCount]=cvPoint2D32f(i,j); cvCircle(runImg,cvPoint(i,j), 1,CV_RGB(255,0,0),2, CV_AA,0); //画点 RelEdgePoint2DCount++; } } EdgePoint2DCount++; } break; case W2B: if(ftData-secData>200)//白到黑 { for(int n=0;n<searchlines.size();n++)//找出在搜索线上的点 { if (searchlines[n].PTS.y==j&&searchlines[n].PTS.x<i &&searchlines[n].PTE.x>i) { EdgePoint2D[EdgePoint2DCount]=cvPoint2D32f(i,j); } } if (EdgePoint2DCount>0)//大于2点时比较 { bool realPoint=TRUE; for (int m=1;m<=EdgePoint2DCount;m++)//删除X坐标相同的纵向点 { if(EdgePoint2D[EdgePoint2DCount].y == EdgePoint2D[EdgePoint2DCount-m].y) { realPoint=FALSE; } } if(realPoint)//得到非重复点并画出 { RelEdgePoint2D[RelEdgePoint2DCount]=cvPoint2D32f(i,j); cvCircle(runImg,cvPoint(i,j), 1,CV_RGB(255,0,0),2, CV_AA,0); //draw points RelEdgePoint2DCount++; } } EdgePoint2DCount++; } break; } } } //搜索逼近线 if(RelEdgePoint2DCount>2) { cvFitLine2D(RelEdgePoint2D,RelEdgePoint2DCount, CV_DIST_L1,NULL,0.01,0.01,line); CvPoint FirstPoint;//起点 CvPoint LastPoint;//终点 FirstPoint.x=int (line[2]-1000*line[0]); FirstPoint.y=int (line[3]-1000*line[1]); LastPoint.x=int (line[2]+1000*line[0]); LastPoint.y=int (line[3]+1000*line[1]); cvLine( runImg, FirstPoint, LastPoint, CV_RGB(255,0,0), 1, CV_AA);//画出逼近线 } break; } //释放资源 free(EdgePoint2D); free(RelEdgePoint2D); delete[] line; searchlines.clear(); cvResetImageROI(runImg); cvResetImageROI(thrdImg); DrawRecLines(runImg,rec,lineAccuracy,SearchDirection); } //释放资源 cvReleaseImage(&thrdImg); } //画ROI时候 连带画出搜索线 void CvProcess::DrawRecLines(IplImage* runImg,CvRect rec,int lineAccuracy,int SearchDirection) { cvRectangleR(runImg,rec,CV_RGB(0,255,0),1, CV_AA,0); CvPoint RecPS=cvPoint(rec.x,rec.y), RecPE=cvPoint(rec.x+rec.width,rec.y+rec.height); switch(SearchDirection) { case TB : for (int i=1;i<lineAccuracy;i++) { CvPoint Ps=cvPoint(((double)rec.width/lineAccuracy)*i+RecPS.x,RecPS.y); CvPoint Pe=cvPoint(((double)rec.width/lineAccuracy)*i+RecPS.x,RecPE.y); cvLine(runImg,Ps,Pe,CV_RGB(0,255,255),1, CV_AA,0); } break; case LR : for (int i=1;i<lineAccuracy;i++) { CvPoint Ps=cvPoint(RecPS.x,((double)rec.height/lineAccuracy)*i+RecPS.y); CvPoint Pe=cvPoint(RecPE.x,((double)rec.height/lineAccuracy)*i+RecPS.y); cvLine(runImg,Ps,Pe,CV_RGB(0,255,255),1, CV_AA,0); } break; } } //得到ROI内部搜索线 std::vector<CLine> CvProcess::GetRecLines(CvRect rec,int lineAccuracy,int SearchDirection) { std::vector<CLine> SearchLines; CLine line; rec.x=0;//坐标转换值ROI区域 rec.y=0; CvPoint RecPS=cvPoint(rec.x,rec.y), RecPE=cvPoint(rec.x+rec.width,rec.y+rec.height); switch(SearchDirection) { case TB : for (int i=1;i<lineAccuracy;i++) { line.PTS=cvPoint(((double)rec.width/lineAccuracy)*i+RecPS.x,RecPS.y); line.PTE=cvPoint(((double)rec.width/lineAccuracy)*i+RecPS.x,RecPE.y); SearchLines.push_back(line); } break; case LR : for (int i=1;i<lineAccuracy;i++) { line.PTS=cvPoint(RecPS.x,((double)rec.height/lineAccuracy)*i+RecPS.y); line.PTE=cvPoint(RecPE.x,((double)rec.height/lineAccuracy)*i+RecPS.y); SearchLines.push_back(line); } break; } return SearchLines;