1、题目大意:区间修改乘法操作和加法操作,求区间和
2、分析:为了填补bzoj2631的坑还是写一发题解吧,首先呢,既然想要双标记,但是这两个标记之间又有着制约作用,所以要定义优先级,这个优先级就定义为乘法先,加法后吧。。。那个一个区间的标记无非就是乘a加b,那么重点就是如何下传标记了。首先儿子有两个标记c,d,父亲有两个标记a,b, 那么c就等于c乘a啦,而d等于d乘a加b(从操作的先后顺序考虑)很显然吧。于是问题就解决了
3、代码:( 当时的线段树姿势丑陋,求轻喷
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; #define LL long long struct segment_tree{ LL N, P; LL sum[1000000]; LL clazy[1000000]; LL jlazy[1000000]; LL value[1000000]; LL x, y, z; void build(LL l, LL r, LL o){ if(l == r){ clazy[o] = 1; jlazy[o] = 0; sum[o] = value[l]; return; } int mid = (l + r) / 2; build(l, mid, 2 * o); build(mid + 1, r, 2 * o + 1); sum[o] = sum[2 * o] + sum[2 * o + 1]; sum[o] %= P; clazy[o] = 1; jlazy[o] = 0; return; } void updata(LL l, LL r, LL o){ clazy[2 * o] *= clazy[o]; clazy[2 * o] %= P; jlazy[2 * o] *= clazy[o]; jlazy[2 * o] %= P; jlazy[2 * o] += jlazy[o]; jlazy[2 * o] %= P; clazy[2 * o + 1] *= clazy[o]; clazy[2 * o + 1] %= P; jlazy[2 * o + 1] *= clazy[o]; jlazy[2 * o + 1] %= P; jlazy[2 * o + 1] += jlazy[o]; jlazy[2 * o + 1] %= P; sum[o] = sum[o] * clazy[o] + jlazy[o] * (r - l + 1); sum[o] %= P; clazy[o] = 1; jlazy[o] = 0; return; } void add_c(LL l, LL r, LL o){ updata(l, r, o); if(x > r || y < l) return; if(x <= l && r <= y){ clazy[o] = z; updata(l, r, o); return; } LL mid = (l + r) / 2; add_c(l, mid, 2 * o); add_c(mid + 1, r, 2 * o + 1); sum[o] = sum[2 * o] + sum[2 * o + 1]; sum[o] %= P; return; } void add_j(LL l, LL r, LL o){ updata(l, r, o); if(x > r || y < l) return; if(x <= l && r <= y){ jlazy[o] = z; updata(l, r, o); return; } LL mid = (l + r) / 2; add_j(l, mid, 2 * o); add_j(mid + 1, r, 2 * o + 1); sum[o] = sum[2 * o] + sum[2 * o + 1]; sum[o] %= P; return; } LL query(LL l, LL r, LL o){ updata(l, r, o); if(x > r || y < l) return 0; if(x <= l && r <= y) return sum[o]; LL mid = (l + r) / 2; LL ret = 0; ret += query(l, mid, 2 * o); ret %= P; ret += query(mid + 1, r, 2 * o + 1); ret %= P; sum[o] = sum[2 * o] + sum[2 * o + 1]; sum[o] %= P; return ret; } } wt; int main(){ scanf("%lld%lld", &wt.N, &wt.P); for(LL i = 1; i <= wt.N; i ++){ scanf("%lld", &wt.value[i]); } wt.build(1, wt.N, 1); LL q; scanf("%lld", &q); while(q --){ LL a; scanf("%lld", &a); if(a == 1){ scanf("%lld%lld%lld", &wt.x, &wt.y, &wt.z); wt.add_c(1, wt.N, 1); } else if(a == 2){ scanf("%lld%lld%lld", &wt.x, &wt.y, &wt.z); wt.add_j(1, wt.N, 1); } else if(a == 3){ scanf("%lld%lld", &wt.x, &wt.y); printf("%lld\n", wt.query(1, wt.N, 1)); } } return 0; }