Spark源码学习(3)——Job Runtime

本文要解决的问题:
本文主要说明作业提交的的具体运行环境,通过学习,对作业的运行有更加深入的理解。

基本流程

这里从SparkContext中的runJob方法开始跟踪它的源码过程。下面的图简要的描述了Job运行的过程
Spark源码学习(3)——Job Runtime_第1张图片

runJob的源码如下:
在org.apache.spark.SparkContext.scala目录下,找到runJob方法,

/**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

这里主要有三个函数:

Clean(func):主要是清理关闭一些内容,比如序列化。

runJob(…):将任务提交给DagScheduler。

doCheckpoint():保存当前RDD,在Job完成之后调用父rdd。

这里主要看runJob方法。

  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
    // Note: Do not call Await.ready(future) because that calls `scala.concurrent.blocking`,
    // which causes concurrent SQL executions to fail if a fork-join pool is used. Note that
    // due to idiosyncrasies in Scala, `awaitPermission` is not actually used anywhere so it's
    // safe to pass in null here. For more detail, see SPARK-13747.

    val awaitPermission = null.asInstanceOf[scala.concurrent.CanAwait]
    waiter.completionFuture.ready(Duration.Inf)(awaitPermission)
    waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

DagScheduler

跟踪源码,进入了DagSchedulerrunJob方法。在这里方法中会直接提交Job,然后等待返回结果。成功时JobSucceeded什么都不做,失败则抛出异常。

进去源码submitJob方法,这方法提交作业到调度器,源码如下:

def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    //检查以确保我们不发动不存在的分区任务
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

跟踪源码:eventProcessLoop是DagScheduler的事件驱动也是一个Actor。这里发送了一个消息eventProcessLoop JobSubmitted:

case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
      dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)

程序中调用了handleJobSubmitted方法

private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)
  }

上面源码中:

1)newStage 实例化一个Stage。Stage就是一组Tasks。

2)创建ActiveJob,是跟踪DAGScheduler中正在活动的Job

3)判断是否在本地运行。

TaskScheduler

接下来再看一看TaskScheduler,TaskScheduler有很多实现类。

这里进入到了TaskSchedulerImpl这个实现类。OK,看看它如何实现submitTasks这个方法的:

override def submitTasks(taskSet: TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
      stageTaskSets(taskSet.stageAttemptId) = manager
      val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
        ts.taskSet != taskSet && !ts.isZombie
      }
      if (conflictingTaskSet) {
        throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
          s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
      }
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (!isLocal && !hasReceivedTask) {
        starvationTimer.scheduleAtFixedRate(new TimerTask() {
          override def run() {
            if (!hasLaunchedTask) {
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
      }
      hasReceivedTask = true
    }
    backend.reviveOffers()
  }

1)首先new了一个createTaskSetManager。createTaskSetManager管理和跟踪TaskSet。失败的任务他会重新启动他,当然重启的次数是有限。这个有createTaskSetManager的构造参数maxTaskFailures决定。

2)添加任务调度模式。Spark中提供了两种调度模式FIFO和FAIR,默认是FIFO。

schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

具体来看看这个调度方法。

override def addSchedulable(schedulable: Schedulable) {
    require(schedulable != null)
    schedulableQueue.add(schedulable)
    schedulableNameToSchedulable.put(schedulable.name, schedulable)
    schedulable.parent = this
  }

FIFO是先进先出,这里将作业集添加到调度队列中去了。

3)backend.reviveOffers()。这个backen是
CoarseGrainedSchedulerBackend。这是一个调度器接口,他会等待Executors通过AKKA来连接他。

override def reviveOffers() {
    driverEndpoint.send(ReviveOffers)
  }

接着进入DriverActor的事件处理方法中去receiveWithLogging,ReviveOffers消息调用了makeOffers()。源码如下:

private def makeOffers() {
      // Filter out executors under killing
      val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
      val workOffers = activeExecutors.map { case (id, executorData) =>
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
      }.toSeq
      launchTasks(scheduler.resourceOffers(workOffers))
    }

源码中有两个方法一个是resourceOffers。然后是launchTasks。

resourceOffers方法会从workers中随机抽出一些来执行任务,然后通过TaskSetManager找出和Worker在一起的Task,最后打包成TaskDescription返回源码如下:

  /** * Called by cluster manager to offer resources on slaves. We respond by asking our active task * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so * that tasks are balanced across the cluster. * 被集群管理者称为提供资源的从节点。我们要求我们的活动任务集来完成任务的优先级。我们把每个节点以循环的方式工作,在整个集群中,任务是平衡的 */
  def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    //如果有新的任务执行,记录他的主机名
    var newExecAvail = false
    for (o <- offers) {
    //如果这个slave不在executorIdToHost中,则添加
      executorIdToHost(o.executorId) = o.host
      executorIdToTaskCount.getOrElseUpdate(o.executorId, 0)
      if (!executorsByHost.contains(o.host)) {
        executorsByHost(o.host) = new HashSet[String]()
        executorAdded(o.executorId, o.host)
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
    //随机shuffle报告,以避免将任务总是分配给同一个worker中
    val shuffledOffers = Random.shuffle(offers)
    // Build a list of tasks to assign to each worker.
    //构建任务列表,分配给每个worker。
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    var launchedTask = false
    for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
      do {
        launchedTask = resourceOfferSingleTaskSet(
            taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
      } while (launchedTask)
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks
  }

接下来看launchTasks方法了。该方法中最重要的一句就是:

executorActor(task.executorId) !LaunchTask(new SerializableBuffer(serializedTask))

excutorActor是在CoarseGrainedExecutorBackend的RegisteredExecutor注册事件中,通过SparkDeploySchedulerBackend启动的AppClient。

而在AppClient内部启动了一个AppActor,AppActor想Master发送注册APP信息。

private def tryRegisterAllMasters(): Array[JFuture[_]] = {
    masterRpcAddresses.map { masterAddress =>
      registerMasterThreadPool.submit(new Runnable {
        override def run(): Unit = {
          try {
            logInfo("Connecting to master " + masterAddress + "...")
            val masterEndpoint = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)
            registerWithMaster(masterEndpoint)
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        }
      })
    }
  }

而在Master中对RegisterApolication事件是这样处理的:

case RegisterApplication(description, driver) =>
      // TODO Prevent repeated registrations from some driver
      if (state == RecoveryState.STANDBY) {
        // ignore, don't send response
      } else {
        logInfo("Registering app " + description.name)
        val app = createApplication(description, driver)
        //注册该Application,更新相应的映射关系,添加到等待队列里面
        registerApplication(app)
        logInfo("Registered app " + description.name + " with ID " + app.id)
        //用persistenceEngine持久化Application信息
        //默认是不保存的,另外还有两种方式,保存在文件或者ZooKeeper中
        persistenceEngine.addApplication(app)
        //返回注册成功信息
        driver.send(RegisteredApplication(app.id, self))
        //作业调度
        schedule()
      }

Worker

LaunchExecutor

任务最终会发送到Worker中去处理,而接收处理的事件就是LauchExecutor了。处理过程如下面源码:

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
      if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
      } else {
        try {
          logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))

          // Create the executor's working directory
          val executorDir = new File(workDir, appId + "/" + execId)
          if (!executorDir.mkdirs()) {
            throw new IOException("Failed to create directory " + executorDir)
          }

          // Create local dirs for the executor. These are passed to the executor via the
          // SPARK_EXECUTOR_DIRS environment variable, and deleted by the Worker when the
          // application finishes.
          val appLocalDirs = appDirectories.getOrElse(appId,
            Utils.getOrCreateLocalRootDirs(conf).map { dir =>
              val appDir = Utils.createDirectory(dir, namePrefix = "executor")
              Utils.chmod700(appDir)
              appDir.getAbsolutePath()
            }.toSeq)
          appDirectories(appId) = appLocalDirs
          val manager = new ExecutorRunner(
            appId,
            execId,
            appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
            cores_,
            memory_,
            self,
            workerId,
            host,
            webUi.boundPort,
            publicAddress,
            sparkHome,
            executorDir,
            workerUri,
            conf,
            appLocalDirs, ExecutorState.RUNNING)
          executors(appId + "/" + execId) = manager
          manager.start()
          coresUsed += cores_
          memoryUsed += memory_
          sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
        } catch {
          case e: Exception =>
            logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)
            if (executors.contains(appId + "/" + execId)) {
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,
              Some(e.toString), None))
        }
      }

源码最后又向Master发送了ExecutorStateChanged

Master将时间转发给Driver,如果果是Executor运行结束,从相应的映射关系里面删除。

CoarseGrainedExecutorBackend

最后发布任务是CoarseGrainedExecutorBackend中的LaunchTask事件。源码如下:

case LaunchTask(data) =>
      if (executor == null) {
        logError("Received LaunchTask command but executor was null")
        exitExecutor(1)
      } else {
      //获得TaskDescription
        val taskDesc = ser.deserialize[TaskDescription](data.value)
        logInfo("Got assigned task " + taskDesc.taskId)
        //将Task放入Executor队列中
        executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
          taskDesc.name, taskDesc.serializedTask)
      }

Executor

最后的任务执行Executor

def launchTask( context: ExecutorBackend, taskId: Long, attemptNumber: Int, taskName: String, serializedTask: ByteBuffer): Unit = {
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
      serializedTask)
    runningTasks.put(taskId, tr)
    threadPool.execute(tr)
  }

进入Executor的run源码过程。

override def run(): Unit = {
      val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
      val deserializeStartTime = System.currentTimeMillis()
      Thread.currentThread.setContextClassLoader(replClassLoader)
      val ser = env.closureSerializer.newInstance()
      logInfo(s"Running $taskName (TID $taskId)")
      execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
      var taskStart: Long = 0
      startGCTime = computeTotalGcTime()

      try {
        val (taskFiles, taskJars, taskProps, taskBytes) =
          Task.deserializeWithDependencies(serializedTask)

        // Must be set before updateDependencies() is called, in case fetching dependencies
        // requires access to properties contained within (e.g. for access control).
        Executor.taskDeserializationProps.set(taskProps)

        updateDependencies(taskFiles, taskJars)
        task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
        task.localProperties = taskProps
        task.setTaskMemoryManager(taskMemoryManager)

        // If this task has been killed before we deserialized it, let's quit now. Otherwise,
        // continue executing the task.
        if (killed) {
          // Throw an exception rather than returning, because returning within a try{} block
          // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
          // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
          // for the task.
          throw new TaskKilledException
        }

        logDebug("Task " + taskId + "'s epoch is " + task.epoch)
        env.mapOutputTracker.updateEpoch(task.epoch)

        // Run the actual task and measure its runtime.
        taskStart = System.currentTimeMillis()
        var threwException = true
        val value = try {
          val res = task.run(
            taskAttemptId = taskId,
            attemptNumber = attemptNumber,
            metricsSystem = env.metricsSystem)
          threwException = false
          res
        } finally {
          val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
          val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()

          if (freedMemory > 0 && !threwException) {
            val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId"
            if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) {
              throw new SparkException(errMsg)
            } else {
              logWarning(errMsg)
            }
          }

          if (releasedLocks.nonEmpty && !threwException) {
            val errMsg =
              s"${releasedLocks.size} block locks were not released by TID = $taskId:\n" +
                releasedLocks.mkString("[", ", ", "]")
            if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false)) {
              throw new SparkException(errMsg)
            } else {
              logWarning(errMsg)
            }
          }
        }
        val taskFinish = System.currentTimeMillis()

        // If the task has been killed, let's fail it.
        if (task.killed) {
          throw new TaskKilledException
        }

        val resultSer = env.serializer.newInstance()
        val beforeSerialization = System.currentTimeMillis()
        val valueBytes = resultSer.serialize(value)
        val afterSerialization = System.currentTimeMillis()

        // Deserialization happens in two parts: first, we deserialize a Task object, which
        // includes the Partition. Second, Task.run() deserializes the RDD and function to be run.
        task.metrics.setExecutorDeserializeTime(
          (taskStart - deserializeStartTime) + task.executorDeserializeTime)
        // We need to subtract Task.run()'s deserialization time to avoid double-counting
        task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)
        task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
        task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization)

        // Note: accumulator updates must be collected after TaskMetrics is updated
        val accumUpdates = task.collectAccumulatorUpdates()
        // TODO: do not serialize value twice
        val directResult = new DirectTaskResult(valueBytes, accumUpdates)
        val serializedDirectResult = ser.serialize(directResult)
        val resultSize = serializedDirectResult.limit

        // directSend = sending directly back to the driver
        val serializedResult: ByteBuffer = {
          if (maxResultSize > 0 && resultSize > maxResultSize) {
            logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
              s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
              s"dropping it.")
            ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
          } else if (resultSize > maxDirectResultSize) {
            val blockId = TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId,
              new ChunkedByteBuffer(serializedDirectResult.duplicate()),
              StorageLevel.MEMORY_AND_DISK_SER)
            logInfo(
              s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
            ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
          } else {
            logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
            serializedDirectResult
          }
        }

        execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

      } catch {
        case ffe: FetchFailedException =>
          val reason = ffe.toTaskEndReason
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

        case _: TaskKilledException | _: InterruptedException if task.killed =>
          logInfo(s"Executor killed $taskName (TID $taskId)")
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))

        case CausedBy(cDE: CommitDeniedException) =>
          val reason = cDE.toTaskEndReason
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

        case t: Throwable =>
          // Attempt to exit cleanly by informing the driver of our failure.
          // If anything goes wrong (or this was a fatal exception), we will delegate to
          // the default uncaught exception handler, which will terminate the Executor.
          logError(s"Exception in $taskName (TID $taskId)", t)

          // Collect latest accumulator values to report back to the driver
          val accums: Seq[AccumulatorV2[_, _]] =
            if (task != null) {
              task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart)
              task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
              task.collectAccumulatorUpdates(taskFailed = true)
            } else {
              Seq.empty
            }

          val accUpdates = accums.map(acc => acc.toInfo(Some(acc.value), None))

          val serializedTaskEndReason = {
            try {
              ser.serialize(new ExceptionFailure(t, accUpdates).withAccums(accums))
            } catch {
              case _: NotSerializableException =>
                // t is not serializable so just send the stacktrace
                ser.serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums))
            }
          }
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason)

          // Don't forcibly exit unless the exception was inherently fatal, to avoid
          // stopping other tasks unnecessarily.
          if (Utils.isFatalError(t)) {
            SparkUncaughtExceptionHandler.uncaughtException(t)
          }

      } finally {
        runningTasks.remove(taskId)
      }
    }

你可能感兴趣的:(源码,spark,大数据,源码学习,Job-Runtim)